高一數(shù)學(xué)《直線與方程》知識點整理
1. 當(dāng)直線l與x軸相交時,我們把x軸正方向與直線l向上方向之間所成的角叫做直線l的傾斜角.當(dāng)直線l與x軸平行或重合時, 我們規(guī)定它的傾斜角為0°. 則直線l的傾斜角 的范圍是 .
2. 傾斜角不是90°的直線的斜率,等于直線的傾斜角的正切值,即 . 如果知道直線上兩點 ,則有斜率公式 . 特別地是,當(dāng) , 時,直線與x軸垂直,斜率k不存在;當(dāng) , 時,直線與y軸垂直,斜率k=0.
注意:直線的傾斜角α=90°時,斜率不存在,即直線與y軸平行或者重合. 當(dāng)α=90°時,斜率k=0;當(dāng) 時,斜率 ,隨著α的增大,斜率k也增大;當(dāng) 時,斜率 ,隨著α的增大,斜率k也增大. 這樣,可以求解傾斜角α的范圍與斜率k取值范圍的一些對應(yīng)問題.
兩條直線平行與垂直的'判定
1. 對于兩條不重合的直線? 、 ,其斜率分別為 、 ,有:
(1) ? ;(2) ? .
2. 特例:兩條直線中一條斜率不存在時,另一條斜率也不存在時,則它們平行,都垂直于x軸;….
直線的點斜式方程
1. 點斜式:直線 過點 ,且斜率為k,其方程為 .
2. 斜截式:直線 的斜率為k,在y軸上截距為b,其方程為 .
3. 點斜式和斜截式不能表示垂直x軸直線. 若直線 過點 且與x軸垂直,此時它的傾斜角為90°,斜率不存在,它的方程不能用點斜式表示,這時的直線方程為 ,或 .
4. 注意: 與 是不同的方程,前者表示的直線上缺少一點 ,后者才是整條直線.
直線的兩點式方程
1. 兩點式:直線 經(jīng)過兩點 ,其方程為 ,
2. 截距式:直線 在x、y軸上的截距分別為a、b,其方程為 .
3. 兩點式不能表示垂直x、y軸直線;截距式不能表示垂直x、y軸及過原點的直線.
4. 線段 中點坐標(biāo)公式 .
直線的一般式方程
1. 一般式: ,注意A、B不同時為0. 直線一般式方程 化為斜截式方程 ,表示斜率為 ,y軸上截距為 的直線.
2 與直線 平行的直線,可設(shè)所求方程為 ;與直線 垂直的直線,可設(shè)所求方程為 . 過點 的直線可寫為 .
經(jīng)過點 ,且平行于直線l的直線方程是 ;
經(jīng)過點 ,且垂直于直線l的直線方程是 .
3. 已知直線 的方程分別是: ( 不同時為0), ( 不同時為0),則兩條直線的位置關(guān)系可以如下判別:
(1) ;(2) ;
(3) 與 重合 ; (4) 與 相交 .
如果 時,則 ; 與 重合 ; 與 相交 .
兩條直線的交點坐標(biāo)
1. 一般地,將兩條直線的方程聯(lián)立,得到二元一次方程組 . 若方程組有惟一解,則兩條直線相交,此解就是交點的坐標(biāo);若方程組無解,則兩條直線無公共點,此時兩條直線平行;若方程組有無數(shù)解,則兩條直線有無數(shù)個公共點,此時兩條直線重合.
2. 方程 為直線系,所有的直線恒過一個定點,其定點就是 與 的交點.
兩點間的距離
1. 平面內(nèi)兩點 , ,則兩點間的距離為: .
特別地,當(dāng) 所在直線與x軸平行時, ;當(dāng) 所在直線與y軸平行時, ;當(dāng) 在直線 上時, .
2. 坐標(biāo)法解決問題的基本步驟是:(1)建立坐標(biāo)系,用坐標(biāo)表示有關(guān)量;(2)進行有關(guān)代數(shù)運算;(3)把代數(shù)運算的結(jié)果“翻譯”成幾何關(guān)系.
【高一數(shù)學(xué)《直線與方程》知識點整理】相關(guān)文章:
高一數(shù)學(xué)重點直線與方程的知識點01-02
高一數(shù)學(xué)函數(shù)與方程的知識點整理02-24
高考數(shù)學(xué)直線與方程復(fù)習(xí)知識點09-11
高三數(shù)學(xué)復(fù)習(xí)直線和圓的方程知識點02-22
高考數(shù)學(xué)軌跡方程的求解知識點歸納整理09-15
數(shù)學(xué)高一函數(shù)知識點整理02-22
高一數(shù)學(xué)《直線的點斜式方程》教學(xué)反思11-21