高考數(shù)學知識點總結
上學期間,說到知識點,大家是不是都習慣性的重視?知識點就是“讓別人看完能理解”或者“通過練習我能掌握”的內容。哪些才是我們真正需要的知識點呢?以下是小編幫大家整理的高考數(shù)學知識點總結,歡迎閱讀與收藏。
高考數(shù)學知識點總結一
遺忘空集致誤
錯因分析:由于空集是任何非空集合的真子集,因此,對于集合B高三經(jīng)典糾錯筆記:數(shù)學A,就有B=A,φ≠B高三經(jīng)典糾錯筆記:數(shù)學A,B≠φ,三種情況,在解題中如果思維不夠縝密就有可能忽視了 B≠φ這種情況,導致解題結果錯誤。尤其是在解含有參數(shù)的集合問題時,更要充分注意當參數(shù)在某個范圍內取值時所給的集合可能是空集這種情況?占且粋特殊的集合,由于思維定式的原因,考生往往會在解題中遺忘了這個集合,導致解題錯誤或是解題不全面。
高考數(shù)學知識點總結二
忽視集合元素的三性致誤
錯因分析:集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數(shù)的集合,實際上就隱含著對字母參數(shù)的一些要求。在解題時也可以先確定字母參數(shù)的范圍后,再具體解決問題。
高考數(shù)學知識點總結三
四種命題的結構不明致誤
錯因分析:如果原命題是“若 A則B”,則這個命題的逆命題是“若B則A”,否命題是“若┐A則┐B”,逆否命題是“若┐B則┐A”。這里面有兩組等價的命題,即“原命題和它的逆否命題等價,否命題與逆命題等價”。在解答由一個命題寫出該命題的其他形式的命題時,一定要明確四種命題的結構以及它們之間的等價關系。另外,在否定一個命題時,要注意全稱命題的否定是特稱命題,特稱命題的否定是全稱命題。如對“a,b都是偶數(shù)”的否定應該是“a,b不都是偶數(shù)”,而不應該是“a ,b都是奇數(shù)”。
高考數(shù)學知識點總結
充分必要條件顛倒致誤
錯因分析:對于兩個條件A,B,如果A=>B成立,則A是B的充分條件,B是A的必要條件;如果B=>A成立,則A是B的必要條件,B是A的充分條件;如果A<=>B,則A,B互為充分必要條件。解題時最容易出錯的就是顛倒了充分性與必要性,所以在解決這類問題時一定要根據(jù)充要條件的概念作出準確的判斷。
高考數(shù)學易錯點
邏輯聯(lián)結詞理解不準致誤
錯因分析:在判斷含邏輯聯(lián)結詞的命題時很容易因為理解不準確而出現(xiàn)錯誤,在這里我們給出一些常用的判斷方法,希望對大家有所幫助:p∨q真<=>p真或q真,命題p∨q假<=>p假且q假(概括為一真即真);命題p∧q真<=>p真且q真,p∧q假<=>p假或q假(概括為一假即假);┐p真<=>p假,┐p假<=>p真(概括為一真一假)。
求函數(shù)定義域忽視細節(jié)致誤
錯因分析:函數(shù)的定義域是使函數(shù)有意義的自變量的取值范圍,因此要求定義域就要根據(jù)函數(shù)解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數(shù)的定義域。在求一般函數(shù)定義域時要注意下面幾點:(1)分母不為0;(2)偶次被開放式非負;(3)真數(shù)大于0;(4)0的0次冪沒有意義。函數(shù)的定義域是非空的數(shù)集,在解決函數(shù)定義域時不要忘記了這點。對于復合函數(shù),要注意外層函數(shù)的定義域是由內層函數(shù)的值域決定的。
高考數(shù)學數(shù)列知識點
1.數(shù)列的定義
按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個數(shù)都叫做數(shù)列的項.
(1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列.
(2)在數(shù)列的定義中并沒有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數(shù)列:-1,1,-1,1,….
(4)數(shù)列的項與它的項數(shù)是不同的,數(shù)列的項是指這個數(shù)列中的某一個確定的數(shù),是一個函數(shù)值,也就是相當于f(n),而項數(shù)是指這個數(shù)在數(shù)列中的位置序號,它是自變量的值,相當于f(n)中的n.
(5)次序對于數(shù)列來講是十分重要的,有幾個相同的數(shù),由于它們的排列次序不同,構成的數(shù)列就不是一個相同的數(shù)列,顯然數(shù)列與數(shù)集有本質的區(qū)別.如:2,3,4,5,6這5個數(shù)按不同的次序排列時,就會得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.
2.數(shù)列的分類
(1)根據(jù)數(shù)列的項數(shù)多少可以對數(shù)列進行分類,分為有窮數(shù)列和無窮數(shù)列.在寫數(shù)列時,對于有窮數(shù)列,要把末項寫出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數(shù)列.
(2)按照項與項之間的大小關系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動數(shù)列、常數(shù)列.
3.數(shù)列的通項公式
數(shù)列是按一定次序排列的一列數(shù),其內涵的本質屬性是確定這一列數(shù)的規(guī)律,這個規(guī)律通常是用式子f(n)來表示的,
這兩個通項公式形式上雖然不同,但表示同一個數(shù)列,正像每個函數(shù)關系不都能用解析式表達出來一樣,也不是每個數(shù)列都能寫出它的通項公式;有的數(shù)列雖然有通項公式,但在形式上,又不一定是的,僅僅知道一個數(shù)列前面的有限項,無其他說明,數(shù)列是不能確定的,通項公式更非.如:數(shù)列1,2,3,4。
高考數(shù)學必考知識點
三角函數(shù)。
注意歸一公式、誘導公式的正確性。
數(shù)列題。
1、證明一個數(shù)列是等差(等比)數(shù)列時,最后下結論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數(shù)列;
2、最后一問證明不等式成立時,如果一端是常數(shù),另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學歸納法(用數(shù)學歸納法時,當n=k+1時,一定利用上n=k時的假設,否則不正確。利用上假設后,如何把當前的式子轉化到目標式子,一般進行適當?shù)姆趴s,這一點是有難度的。簡潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結論時一定寫上綜上:由①②得證;
3、證明不等式時,有時構造函數(shù),利用函數(shù)單調性很簡單
立體幾何題。
1、證明線面位置關系,一般不需要去建系,更簡單;
2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,要建系;
3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關系。
概率問題。
1、搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數(shù);
2、搞清是什么概率模型,套用哪個公式;
3、記準均值、方差、標準差公式;
4、求概率時,正難則反(根據(jù)p1+p2+……+pn=1);
5、注意計數(shù)時利用列舉、樹圖等基本方法;
6、注意放回抽樣,不放回抽樣;
正弦、余弦典型例題。
1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為
2、已知α為銳角,且,則α的度數(shù)是()A、30°B、45°C、60°D、90°
3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數(shù)是()A、75°B、90°C、105°D、120°
4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°
5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點,EF⊥BC,垂足為F,求sin∠EBF的值。
正弦、余弦解題訣竅。
1、已知兩角及一邊,或兩邊及一邊的對角(對三角形是否存在要討論)用正弦定理。
2、已知三邊,或兩邊及其夾角用余弦定理
3、余弦定理對于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負,還是為零,就可以確定是鈍角。直角還是銳角。
【高考數(shù)學知識點總結】相關文章:
數(shù)學高考知識點總結08-20
數(shù)學高考知識點總結06-18
高考數(shù)學集合知識點總結08-01
高考數(shù)學必考知識點總結10-25
【精選】高考數(shù)學知識點總結07-06
高考數(shù)學知識點總結07-03
數(shù)學高考知識點總結15篇12-07
(優(yōu)秀)高考數(shù)學必考知識點總結10-26
[推薦]高考數(shù)學知識點總結07-08