av手机免费在线观看,国产女人在线视频,国产xxxx免费,捆绑调教一二三区,97影院最新理论片,色之久久综合,国产精品日韩欧美一区二区三区

數學一次函數知識點

時間:2024-08-31 17:34:58 志彬 數學 我要投稿

數學一次函數知識點

  在我們平凡無奇的學生時代,大家對知識點應該都不陌生吧?知識點就是掌握某個問題/知識的學習要點。還在為沒有系統(tǒng)的知識點而發(fā)愁嗎?下面是小編幫大家整理的數學一次函數知識點,僅供參考,歡迎大家閱讀。

數學一次函數知識點

  數學一次函數知識點 1

  一次函數的定義

  一次函數,也作線性函數,在x,y坐標軸中可以用一條直線表示,當一次函數中的一個變量的值確定時,可以用一元一次方程確定另一個變量的值。

  函數的表示方法

  列表法:一目了然,使用起來方便,但列出的對應值是有限的,不易看出自變量與函數之間的對應規(guī)律。

  解析式法:簡單明了,能夠準確地反映整個變化過程中自變量與函數之間的相依關系,但有些實際問題中的函數關系,不能用解析式表示。

  圖象法:形象直觀,但只能近似地表達兩個變量之間的函數關系。

  一次函數的性質

  一般地,形如y=kx+b(k,b是常數,且k0),那么y叫做x的一次函數,當b=0時,y=kx+b即y=kx,所以說正比例函數是一種特殊的一次函數

  注:一次函數一般形式y(tǒng)=kx+b(k不為0)

  a).k不為0

  b).x的指數是1

  c).b取任意實數

  數學一次函數知識點 2

  一次函數與一元一次方程的關系

  一元一次方程ax+b=0(a,b為常數,且a≠0)可看作一次函數y=ax+b的函數值是0的一種特例,其解是直線y=ax+b與x軸交點的橫坐標,所以解一元一次方程ax+b=0可以轉化為當一次函數y=ax+b的值為0時,求相應自變量x的值,因此可以利用圖像來解一元一次方程。

  求直線y=kx+b與x軸交點時,可令y=0,得到一元一次方程kx+b=0,解方程得x=-,則- 就是直線y=kx+b與x軸交點的橫坐標。

  反過來解一元一次方程也可以看作是求直線y=kx+b與x軸交點的橫坐標的值。

  待定系數法

  先設出函數解析式,在根據條件確定解析式中的未知的系數,從而寫出這個式子的方法,叫待定系數法。

  用待定系數法確定解析式的步驟:

 、僭O函數表達式為:y=kx 或 y=kx+b

  ②將已知點的坐標代入函數表達式,得到方程(組)

 、劢夥匠袒蚪M,求出待定的系數的值。

 、馨训闹荡厮O表達式,從而寫出需要的解析式。

  注意; 正比例函數y=kx只要有一個條件就可以。而一次函數y=kx+b需要有兩個條件。

  性質

  ①圖像形:是一條直線。稱為直線y=kx+b

  ②象限性:

  當k>0、b>0時,直線經過第一、二、三象限,不過四象限。

  當k>0、b<0時,直線經過第一、三、四象限。不過二象限

  當k<0 b="">0時,直線經過第一、二,四象限。不過三象限

  當k<0 、b<0時,直線經過第二,三、四象限。不過一象限

 、墼鰷p性:當k>0時,直線從左向右上升,隨著x的增大(減小) y也增大(減小)

  當k<0時,直線從左向右下降。隨著x的增大(減小) y反而而減小(增大)

 、苓B續(xù)性:由于自變量取值是全體實數,所以圖像具有連續(xù)性。(沒有最大或最小值)

  ⑤截距性;

  當b>0時,直線與y軸交于y軸正半軸(交點位于軸上方)

  當b<0時,直線與y軸交于y軸負半軸(交點位于軸下方)

 、迌A斜性:︱k︱越大,直線越靠向y軸,與x軸正方向的夾角度數越大,越陡。

  ⑦平移性; 直線y=kx+b

  當b>0時,是由直線y=kx 向上平移得到的。

  當b<0時,是由直線y=kx 向下平移得到的。

  一次函數與正比例函數關系

  正比例函數包含于一次函數,即正比例函數是一次函數;正比例函數是一次函數當b=0時的特殊情況。

  一次函數定義

  一般地,形如y=kx+b(k、b是常數,k≠0)的函數,叫一次函數。

  (存在條件: ①兩個變量x、y,②k、b是常數且k≠0,③自變量x的次數是1,④自變量x的是整式形式)

  數學一次函數知識點 3

  一、定義與定義式:

  自變量x和因變量y有如下關系:

  y=kx+b

  則此時稱y是x的一次函數。

  特別地,當b=0時,y是x的正比例函數。

  即:y=kx(k為常數,k≠0)

  二、一次函數的性質:

  1.y的變化值與對應的x的變化值成正比例,比值為k

  即:y=kx+b(k為任意不為零的實數b取任何實數)

  2.當x=0時,b為函數在y軸上的截距。

  三、一次函數的圖像及性質:

  1.作法與圖形:通過如下3個步驟

 。1)列表;

 。2)描點;

 。3)連線,可以作出一次函數的圖像——一條直線。因此,作一次函數的圖像只需知道2點,并連成直線即可。(通常找函數圖像與x軸和y軸的交點)

  2.性質:(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b.(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像總是過原點。

  3.k,b與函數圖像所在象限:

  當k>0時,直線必通過一、三象限,y隨x的增大而增大;

  當k<0時,直線必通過二、四象限,y隨x的增大而減小。

  當b>0時,直線必通過一、二象限;

  當b=0時,直線通過原點

  當b<0時,直線必通過三、四象限。

  特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數的圖像。

  這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限

  四、確定一次函數的表達式:

  已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數的表達式。

  (1)設一次函數的表達式(也叫解析式)為y=kx+b.

 。2)因為在一次函數上的任意一點P(x,y),都滿足等式y(tǒng)=kx+b.所以可以列出2個方程:y1=kx1+b……①和y2=kx2+b……②

 。3)解這個二元一次方程,得到k,b的值。

 。4)最后得到一次函數的表達式。

  五、一次函數在生活中的應用:

  1.當時間t一定,距離s是速度v的一次函數。s=vt.

  2.當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數。設水池中原有水量S.g=S-ft.

  六、常用公式:(不全,希望有人補充)

  1.求函數圖像的k值:(y1-y2)/(x1-x2)

  2.求與x軸平行線段的中點:|x1-x2|/2

  3.求與y軸平行線段的中點:|y1-y2|/2

  4.求任意線段的長:√(x1-x2)^2+(y1-y2)^2(注:根號下(x1-x2)與(y1-y2)的平方和)

  數學一次函數知識點 4

  一次函數的表達式是=x+b (≠b 、b是常數),其中是x自變量,是因變量,讀作是x的一次函數,當x取一個值時,有且只有一個值與x對應,如果有兩個或兩個以上的值與x對應,那么這個函數就不是一次函數。

  一次函數表達式求解:

  一次函數也叫做線性函數,一般在X,坐標軸中用一條直線來表示,當一次函數中的一個變量的值確定的情況下,可以用一元一次方程來解答出另一個變量的值。

  一次函數的表達方式一般都為=x+b的函數,叫做是X的一次函數,當常數項為零時的一次函數,可表示為=x(≠0),這時的常數也叫比例系數。常用來表示一次函數的方法有解析法,圖像法和列表法。一次函數的解析式一般分為點斜式,兩點式,截距式。

  解答一次函數的作法最簡單的就是列表法,取一個滿足一次函數表達式的兩個點的坐標,來確定另一個未知數的值。還有一個描點法。一般取兩個點,根據“兩點確定一條直線”的道理,也可叫“兩點法”。通常情況下=x+b(≠0)的圖象過(0,b)和(-b/,0)兩點即可畫出。

  一次函數與一次方程之間的關系:

  一次函數、方程和不等式是初中數學的主要內容之一,也是中考的必考知識點,新課程標準把三部分的關系提到了十分明朗化的程度。因此,應該重視這部分內容的教學在教學中,可以從以下幾個知識點進行辨析。

  任何一個一元一次方程都可以轉化成ax+b=0(a,b為常數,a≠0)的形式,所以解一元一次方程可以轉化為:當某個一次函數的值為0時,求相應的自變量的值(從數的角度);從圖像上來看,就相當于已知直線=ax+b,確定它與x軸的交點橫坐標的值(從形的角度)。

  利用函數圖像解方程:-2x+2=0,可以轉化為求一次函數=-2x+2與x軸交點的橫坐標。而=-2x+2與x軸交點的橫坐標為1,所以方程-2x+2=0的解為x=1。

  注意:解一元一次方程ax+b=0(a≠0)與求函數=ax+b(a≠0)的圖像與x軸交點的橫坐標是同一個問題。不同的是前者從數的角度來解決問題,后者從形的角度來解決問題。

  每個二元一次方程組都對應兩個一次函數,從數的角度來看,解方程組相當于考慮自變量為何值時兩個函數的值相等,以及這個函數是何值;從形的角度來看,解方程組相當于確定兩條直線交點的坐標,從而使方程組得出答案。

【數學一次函數知識點】相關文章:

最新初中數學一次函數知識點08-07

八年級上冊數學書一次函數知識點10-17

八年級數學一次函數的應用知識點歸納06-03

數學函數知識點12-12

數學必考知識點07-12

數學中考知識點06-29

高考數學知識點10-28

中考數學必考知識點06-16

數學知識點歸納06-21

小升初數學的知識點匯總03-21