av手机免费在线观看,国产女人在线视频,国产xxxx免费,捆绑调教一二三区,97影院最新理论片,色之久久综合,国产精品日韩欧美一区二区三区

圓柱的體積反思

時間:2025-04-02 00:45:01 好文 我要投稿

圓柱的體積反思15篇(推薦)

圓柱的體積反思1

  《圓柱的體積》一課是在學(xué)生已經(jīng)學(xué)習了“圓的面積計算”和“長方體、正方體的體積”及圓柱的相關(guān)知識的基礎(chǔ)上教學(xué)的。

圓柱的體積反思15篇(推薦)

  教學(xué)時我注重引導(dǎo)學(xué)生經(jīng)歷“類比猜想 驗證說明”的探索過程。由于圓柱和長方體都是直柱體,長方體的體積是底面積×高,因而我引導(dǎo)學(xué)生猜想圓柱的體積是否也可以用底面積×高來計算。接著引導(dǎo)學(xué)生想辦法證明自己的`猜想,也就是驗證說明。重視學(xué)生已有的經(jīng)驗,是新課改教學(xué)的重要理念,因而我引導(dǎo)學(xué)生回憶以前學(xué)習的“把未知的問題轉(zhuǎn)化為已知的問題”的方法,即“怎樣把圓柱轉(zhuǎn)化成已知的形體”的問題。大部分學(xué)生都能想到把“圓柱轉(zhuǎn)化成長方體”,接著就“怎樣將圓柱轉(zhuǎn)化成長方體”這個問題,讓他們觀察、研究、討論。學(xué)生受到以前“圓的面積”推導(dǎo)過程的啟發(fā),都知道應(yīng)把圓柱平均分成若干份切開,拼成近似的長方體。由于學(xué)生沒有學(xué)具,因此我用教具演示整個過程,然后引導(dǎo)學(xué)生思考:長方體底面的長相當于圓柱底面的什么?(周長的一半即π r)長方體底面的寬相當于圓柱底面的什么?(圓的半徑r)再根據(jù)長方體的面積公式推導(dǎo)出圓柱體積公式V=π r2 × h或V=S×h。這樣讓學(xué)生親身經(jīng)歷知識的形成過程,為學(xué)生的主動探索與發(fā)現(xiàn)提供了空間。

  我覺得本課比較成功的一點是學(xué)生除了掌握本課的知識點外,還懂得了“類比猜想 驗證說明”的數(shù)學(xué)思想方法,可以說是既授之于“魚”,又授之于“漁”。

圓柱的體積反思2

  (1)

  本節(jié)可的教學(xué)內(nèi)容是九年義務(wù)教育六年級下冊的《圓柱的體積》,以前教學(xué)此內(nèi)容時,直接告訴學(xué)生:圓柱的體積=底面積×高,用字母表示公式:V=Sh,讓學(xué)生套公式練習;我教此內(nèi)容時,不按傳統(tǒng)的教學(xué)方法,而是采用新的教學(xué)理念,讓學(xué)生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識。對此,我作如下反思:

  一、學(xué)生學(xué)到了有價值的知識。

  學(xué)生通過實踐、探索、發(fā)現(xiàn),得到的知識是“活”的,這樣的知識對學(xué)生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案也不是老師告訴的,而是、學(xué)生在自己艱苦的學(xué)習中發(fā)現(xiàn)并從學(xué)生的口里說出來的這樣的知識具有個人意義,理解更深刻。

  二、培養(yǎng)了學(xué)生的科學(xué)精神和方法。

  新課程改革明確提出要“強調(diào)讓學(xué)生通過實踐增強探究和創(chuàng)新意識,學(xué)習科學(xué)研究的方法,培養(yǎng)科學(xué)態(tài)度和科學(xué)精神”。學(xué)生動手實踐、觀察得出結(jié)論的過程,就是科學(xué)研究的過程。

  三、促進了學(xué)生的思維發(fā)展。

  傳統(tǒng)的`教學(xué)只關(guān)注教給學(xué)生多少知識,把學(xué)生當成知識的“容器”。學(xué)生的學(xué)習只是被動地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。而這里創(chuàng)設(shè)了豐富的教學(xué)情景,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識,從而促進了學(xué)生的思維發(fā)展。

  本節(jié)課采用新的教學(xué)方法,取得了較好的教學(xué)效果,不足之處是:由于學(xué)生自由討論、實踐和思考的時間較多,練習的時間較少。

  (2)

  圓柱的體積一課,重點是體積公式的推導(dǎo)。公式導(dǎo)出后,如何進行計算應(yīng)用。

  教學(xué)中學(xué)生存在的問題是:

  1、學(xué)生對推導(dǎo)過程理解有困難,不深入;

  2、在計算的過程中,單位名稱用錯,體積單位用面積單位。

  3、對于書中所給的立體圖形,認識不到位,不能正確分辨直徑、半徑以及圓柱的高,做題出錯。圓柱的高也可以叫做圓柱的長(個別學(xué)生不清楚)

  突破難點的方法:

  1、為了避免單位名稱的錯誤,可在課前復(fù)習中設(shè)計單位換算的填空題,辨析題等。例如:1平方米=()平方分米=()平方厘米100平方厘米=1立方分米。

  2、在學(xué)生利用學(xué)具理解公式的推導(dǎo)過程時,應(yīng)放手讓學(xué)動手動腦自己解決,但動手之前一定要把任務(wù)布置清楚,讓孩子們自己發(fā)現(xiàn)圓柱與長方體各部分之間的關(guān)系,從而推導(dǎo)出圓柱的體積公式。

  3、注意引導(dǎo)學(xué)生參與到探索知識的發(fā)生發(fā)展過程中,突破以往數(shù)學(xué)學(xué)習單一、被動的學(xué)習方式,關(guān)注學(xué)生的實踐活動和直接經(jīng)驗,“通過自己的活動”獲得情感、能力、智力的全面發(fā)展。小學(xué)階段,操作活動是數(shù)學(xué)活動的重要組成部分,也是學(xué)生學(xué)習活動的重要方式。

圓柱的體積反思3

  今天第一節(jié)課荊校長和建英聽了我講的《圓柱的體積》,提出了幾點我應(yīng)該注意和改進的地方。

  一是,要注重課前的預(yù)習,圓柱的體積一課復(fù)習舊知環(huán)節(jié),需要學(xué)生回顧什么是體積,長方體正方體體積公式,回顧轉(zhuǎn)化的方法推導(dǎo)圓面積計算公式,需要回顧的舊知較多,所以可以課前設(shè)計成幾個問題讓學(xué)生預(yù)習,就可以避免課上學(xué)生由于對知識的遺忘,而浪費時間,影響課堂的高效。

  二是,猜想圓柱的體積可能與什么有關(guān)這個環(huán)節(jié),由于注重讓學(xué)生猜想,感受,體驗,并通過媒體演示驗證猜想的正確性,有些浪費時間。

  三是,推導(dǎo)體積公式環(huán)節(jié),我讓學(xué)生利用拆好的圓柱學(xué)具,兩人合作,圍繞三個問題進行探究“圓柱可以轉(zhuǎn)化為我們學(xué)過的哪個立體圖形,轉(zhuǎn)化后的`圖形與圓柱之間有怎樣的關(guān)系,利用這樣的關(guān)系可以推導(dǎo)出怎樣的公式”,學(xué)生合作的成果需要通過語言表達出來,所以之后的展示匯報環(huán)節(jié),我叫了三個學(xué)生上臺按照提示的三個問題完整的表述,最后有全體齊說,沒有讓學(xué)生再互相說一說,在說中再去感受推導(dǎo)的過程,我覺得這也是我欠缺的地方。

  四是,練習反饋環(huán)節(jié),我依據(jù)學(xué)生推導(dǎo)出的四個公式,先讓學(xué)生看著這些公式說一說,求圓柱的體積需要知道什么條件,學(xué)生說出了四種情況:知道了半徑和高求體積;知道了周長和高求體積;知道了底面積和高求體積;知道了直徑和高求體積。我順勢出了四道這樣的練習題讓學(xué)生在本上完成并集體訂正,感覺練習的量不夠。

  通過這節(jié)課,從荊校長和建英的評課中,我體會到要想提高課堂效率,首先,抓好課前預(yù)習,其次,注重用多種方式讓學(xué)生多說而且要說透,最后,注意各環(huán)節(jié)時間分配要合理,做到心中有數(shù)。還有就是要加大練習量,關(guān)注到每一個學(xué)生,對學(xué)生學(xué)習效果掌握程度做到了如指掌。

圓柱的體積反思4

  圓柱的體積是幾何知識的綜合運用,它是在學(xué)生了解了圓柱的特征、掌握了長方體和正方體體積以及圓的面積計算公式推導(dǎo)過程的基礎(chǔ)上進行教學(xué)的。在本節(jié)課的教學(xué)設(shè)計上我十分注重從生活情境入手,讓學(xué)生經(jīng)歷圓柱體積的探究過程,通過一系列的數(shù)學(xué)活動,培養(yǎng)學(xué)生探究數(shù)學(xué)知識的能力和方法,同時在學(xué)習活動中體驗學(xué)習的樂趣。從本節(jié)課教學(xué)目標的達成來看,較好地體現(xiàn)了以下幾方面:

  一、注重知識之間的內(nèi)在聯(lián)系。

  圓柱的體積的導(dǎo)入,先讓學(xué)生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,接著復(fù)習一下圓面積計算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學(xué)生的思維走向正確的方向,這時教師的引導(dǎo)才是行之有效的,并讓學(xué)生建立起更深層的空間幾何概念。

  二、引導(dǎo)學(xué)生經(jīng)歷知識探究的全過程。

  數(shù)學(xué)學(xué)習過程充滿著觀察、實驗、模擬、推斷等探索性與挑戰(zhàn)性活動,因此,動手實踐、自主探究、合作交流是《課程標準》所倡導(dǎo)的數(shù)學(xué)學(xué)習的主要方式。在本節(jié)課提示課題后,我先引導(dǎo)學(xué)生獨立思考要解決圓柱的體積問題,可以怎么辦?學(xué)生通過思考很快確定打算把柱轉(zhuǎn)化成長方體。那么怎樣來切割呢?此時利用生活中的“蘿卜”引導(dǎo)學(xué)生思考。同學(xué)們有了圓面積計算公式推導(dǎo)的經(jīng)驗,經(jīng)過思考得出:把圓柱的底面沿直徑分成若干等份。在此基礎(chǔ)上,小組拿出學(xué)具進行了動手操作,拼成了一個近似的長方體。并利用多媒體動畫演示,重現(xiàn)推導(dǎo)過程加深學(xué)生印象。同學(xué)們在操作、比較中,圍繞圓柱體和長方體之間的聯(lián)系,抽象出圓柱體的體積公式。這個過程,學(xué)生從形象具體的知識形成過程中,認識得以升華(較抽象的認識——公式)。

  三、注重學(xué)法指導(dǎo)和數(shù)學(xué)思想方法的.滲透。

  “學(xué)會學(xué)習”是對學(xué)生“學(xué)”的最高要求,因此在教學(xué)中不但要教給學(xué)生知識,更要教給學(xué)生學(xué)習的方法,讓學(xué)生終身受用。在本節(jié)課的教學(xué)中,我把“觀察、猜想、驗證”的學(xué)法指導(dǎo),貫穿于整個學(xué)習過程,使學(xué)生學(xué)得主動有效。在探究方法的引導(dǎo)上從回憶圓的面積公式推導(dǎo)入手,確定轉(zhuǎn)化的方法,體驗轉(zhuǎn)化的過程,驗證轉(zhuǎn)化的結(jié)果,使“轉(zhuǎn)化”、“極限”等數(shù)學(xué)思想在課中得到良好滲透,學(xué)生進一步體會到科學(xué)、條理的數(shù)學(xué)思維方式,從而發(fā)展了學(xué)生的數(shù)學(xué)能力。

  本課中還存在很多不足在例如探究過程中沒有充分的給予學(xué)生說一說、指一指的時間,在引導(dǎo)學(xué)生思考已知圓柱底面半徑(r)和高(h)、已知圓柱底面直徑(d)和高(h)、已知圓柱底面周長(c)和高(h)三種情況時,教師引導(dǎo)過多,應(yīng)給予學(xué)生更充分的思考空間,讓其考慮如果沒有底面積,知道哪個條件也可以求圓柱體積。最后,在練習中缺少反饋,學(xué)生做完練習后,應(yīng)及時做到直觀反饋,總結(jié)優(yōu)缺點,指導(dǎo)學(xué)生做題。

圓柱的體積反思5

  新課程觀強調(diào):

  教材是一種重要的課程資源,對于學(xué)校和教師來說,課程實施更多地應(yīng)該是如何更好地“用教材”,而不是簡單地“教教材”。在實際教學(xué)中,如何落實這一理念?本人結(jié)合“圓柱的體積”一課談?wù)勛约旱膶嵺`與思考。

  [片段一]

  師生共同探究出圓柱的體積計算公式后對公式加以應(yīng)用。師出示教材例4(蘇教版第12冊P8):一根圓柱形鋼材,底面積是20平方厘米,高是1。5米,它的體積是多少?

  由于課前學(xué)生已進行了預(yù)習,多數(shù)學(xué)生是按照教材介紹的解法來解答:

  1.5米=150厘米20×1150=3000(立方厘米)

  師:這道題還有其他結(jié)果嗎?(學(xué)生又沉入了深思)不一會兒,另外兩種結(jié)果紛紛展現(xiàn):

 、20平方厘米=0.002平方米 0。002×11.5=0.003(立方米)

 、20平方厘米=0.2平方分米 1.5米=15分米 0.2×115=3(立方分米)

  師:為什么會出現(xiàn)三種結(jié)果?

  經(jīng)討論,學(xué)生才明白:從不同的角度去考慮問題,將得到不同的結(jié)果。

  [片斷二]

  鞏固與應(yīng)用階段,我將教材練習二中的一個填表題進行了加工組合呈現(xiàn)給學(xué)生這樣一個表格。

  學(xué)生填表后,師:觀察前兩組數(shù)據(jù),你想說什么?

  學(xué)生獨立思考后再小組交流,最后匯報。

  生1:兩個圓柱的高相等,底面積是幾倍的關(guān)系,體積也是幾倍的關(guān)系。

  生2:兩個圓柱的高相等,底面積越大,體積就越大。

  師:觀察后兩組數(shù)據(jù),你想說什么?

  有了前面的基礎(chǔ),學(xué)生很容易說出了后兩組的關(guān)系。

  學(xué)生的表述盡管不是很準確完美,但已說出了其中的規(guī)律,而這個規(guī)律正是解答練習二第17、18題的基礎(chǔ),又為下一單元“比例”的教學(xué)作了提前孕伏。

  [片段三]

  教材的練習中有這樣一題:量一個圓柱形茶杯的高和底面直徑,算出它可裝水多少克?

  學(xué)生動手測量自備的圓柱形茶杯的有關(guān)數(shù)據(jù)并計算它的體積。

  師:水的生命之源。人每天都要飲用一定量的水,請大家課后查閱相關(guān)資料,計算自己每天需要飲用幾杯水(自己的杯子)才能保證健康,并把自己對水的想法寫下來,下節(jié)課我們再交流。

  [教學(xué)反思]

  精心研究教材是用好教材的基礎(chǔ)

  教材作為教學(xué)的憑借與依據(jù),只不過是編者對學(xué)科知識、國家要求與學(xué)生進行整和思考的結(jié)晶。但由于受時間與地域的影響,我們在執(zhí)行教材時不能把它作為一種“枷鎖”,而應(yīng)作為“跳板”——編者意圖與學(xué)生實際的'“跳板”。因此,教學(xué)時,我們要精心研究教材,揣摩編者意圖、考慮學(xué)生實際,創(chuàng)造性地利用教材。

  1、挖掘訓(xùn)練空白,及時補白教材。編者在編寫教材時,也考慮了地域、學(xué)科、時間等因素,留下了諸多空白,我們使用教材時,要深入挖掘其中的訓(xùn)練空白,及時補白教材。[片段一] 中的例題教學(xué),就挖掘出了教材中的訓(xùn)練空白,并沒有把教學(xué)簡單地停留在一種解答方法上,而是在學(xué)生預(yù)習的基礎(chǔ)上引導(dǎo)學(xué)生深入思考,在解決問題的過程中體會“從不同的角度去考慮問題,將得到不同的結(jié)果”的道理,從而學(xué)會多角度考慮問題,提高解決問題的能力。

  2、找出知識聯(lián)系,大膽重組教材。數(shù)學(xué)知識具有一定的結(jié)構(gòu),知識間存在著密切的聯(lián)系,我們在教學(xué)時不能只著眼于本節(jié)課的教學(xué),而應(yīng)找出知識間的內(nèi)在聯(lián)系,幫助學(xué)生建立一個較為完整知識系統(tǒng)。[片斷二]的表1僅幫助學(xué)生熟練掌握體積公式,此外無更多的教學(xué)價值,而重組后的表2不僅實現(xiàn)了編者的意圖,而且為“比例”的教學(xué)作了提前孕伏。走出了數(shù)學(xué)教學(xué)的“只見樹木,不見森林”的“點教學(xué)”的誤區(qū)。

  落實課標理念是用好教材的關(guān)鍵

  能否用好教材,關(guān)鍵在于我們的課堂教學(xué)是否落實了新課標的理念。關(guān)注人是新課程的核心理念。我們的數(shù)學(xué)教學(xué)不能再以學(xué)科為中心,而應(yīng)以學(xué)生為出發(fā)點和歸宿。教材在編寫時不可能面面俱到,教師要心里裝著學(xué)生,使用教材前反復(fù)琢磨,怎樣的教學(xué)才能符合新理念。前兩個片段就突破了“學(xué)科中心”和“知識中心”,走向了“學(xué)生中心”。[片斷三]在教材關(guān)注學(xué)生的基礎(chǔ)上向深層發(fā)展——不僅讓學(xué)生動手測量,動腦計算,而且讓學(xué)生在課外展開調(diào)查研究;不僅關(guān)注知識技能,而且關(guān)注了態(tài)度、情感和價值觀(對生命之源——水的自我看法)這一片斷的教學(xué),其價值就在于滲透了人文關(guān)愛。

  學(xué)生獲得發(fā)展是用好教材的標準

  有的教師在教學(xué)中常常脫離教材,片面追求新課程的形式,而忽略了實質(zhì)——“一切為了每一位學(xué)生的發(fā)展”。每個學(xué)生在一節(jié)課的40分鐘里獲得最大發(fā)展應(yīng)作為我們用好教材組織教學(xué)的追求。本節(jié)課緊扣教材,“以本為本”,著眼學(xué)生的發(fā)展,無論是知識技能、過程與方法、數(shù)學(xué)思考還是情感態(tài)度價值觀,學(xué)生都獲得了最大發(fā)展。

圓柱的體積反思6

  圓柱的體積這部分知識是學(xué)生在有了圓柱、圓和長方體的相關(guān)知識基礎(chǔ)上進行教學(xué)的。在知識和技能上,通過對圓柱體積的具體研究,理解圓柱體的體積公式的推導(dǎo)過程,會計算圓柱的體積;在方法的選擇上,抓住新舊知識的聯(lián)系,通過想象、實際操作,從經(jīng)歷和體驗中思考,培養(yǎng)學(xué)生科學(xué)的思維方法;貼近學(xué)生生活實際,創(chuàng)設(shè)情境,解決問題,體現(xiàn)數(shù)學(xué)知識“從生活中來到生活中去”的理念,激發(fā)學(xué)生的學(xué)習興趣和對科學(xué)知識的求知欲,使學(xué)生樂于探索,善于探究。

  在圓的體積公式推導(dǎo)過程中,給予學(xué)生足夠的時間和空間,激發(fā)學(xué)生的探究的欲望,培養(yǎng)學(xué)生的空間想象力。我把圓柱體拼成一個長方體,就是把一個新圖形轉(zhuǎn)換成一個我們學(xué)習過的圖形,通過討論,爭鳴從而得出比較深層的數(shù)學(xué)知識,這種思維的火花,我們老師應(yīng)及時捕捉,讓它開得絢麗多彩,從而讓學(xué)生的個性能得到充分的培養(yǎng)。讓學(xué)生在學(xué)習的過程中體會到數(shù)學(xué)給自己帶來了巨大的成功感和喜悅感,我們老師這樣才能寓教于樂,從而達到了事半功倍了。

  本節(jié)可的教學(xué)內(nèi)容是九年義務(wù)教育六年制小學(xué)教學(xué)第十二冊﹙人教版﹚《圓柱的體積》,以前教學(xué)此內(nèi)容時,直接告訴學(xué)生:圓柱的體積=底面積×高,用字母表示公式:V=S和,讓學(xué)生套公式練習;我教此內(nèi)容時,不按傳統(tǒng)的教學(xué)方法,而是采用新的教學(xué)理念,讓學(xué)生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識。對此,我作如下反思:

  一、學(xué)生學(xué)到了有價值的知識。

  學(xué)生通過實踐、探索、發(fā)現(xiàn),得到的知識是“活”的,這樣的'知識對學(xué)生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案也不是老師告訴的,而是、學(xué)生在自己艱苦的學(xué)習中發(fā)現(xiàn)并從學(xué)生的口里說出來的這樣的知識具有個人意義,理解更深刻。

  二、培養(yǎng)了學(xué)生的科學(xué)精神和方法。

  新課程改革明確提出要“強調(diào)讓學(xué)生通過實踐增強探究和創(chuàng)新意識,學(xué)習科學(xué)研究的方法,培養(yǎng)科學(xué)態(tài)度和科學(xué)精神”。學(xué)生動手實踐、觀察得出結(jié)論的過程,就是科學(xué)研究的過程。

  三、促進了學(xué)生的思維發(fā)展。

  傳統(tǒng)的教學(xué)只關(guān)注教給學(xué)生多少知識,把學(xué)生當成知識的“容器”。學(xué)生的學(xué)習只是被動地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。而這里創(chuàng)設(shè)了豐富的教學(xué)情景,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識,從而促進了學(xué)生的思維發(fā)展。

  本節(jié)課采用新的教學(xué)方法,取得了較好的教學(xué)效果,不足之處是:由于學(xué)生自由討論、實踐和思考的時間較多,練習的時間較少。

圓柱的體積反思7

  今天上了《圓柱的體積》一課,覺得比以前上得輕松,回到辦公室細細品味上課的過程,頗有幾分感受:

  在本課中,當學(xué)生面對新的問題情境—“圓柱的體積該怎么求?”時,能從圓的面積公式的推導(dǎo),根據(jù)已有的知識作出 “轉(zhuǎn)化”的判斷。當然,由于知識經(jīng)驗的不足,表達得不是很清晰。但學(xué)生的這些都是有價值的。這些“猜想”閃爍著學(xué)生智慧的火花,折射出學(xué)生的創(chuàng)造精神。在此基礎(chǔ)上,讓學(xué)生以小組合作方式,利用已切開的圓柱體教具進行驗證,在討論聲中,學(xué)生獲得了真知?梢,教師要保護學(xué)生的創(chuàng)造熱情并給以科學(xué)探究方法的引導(dǎo),以發(fā)展學(xué)生的創(chuàng)造性。在這點上,我對學(xué)生的探究精神給予了充分的肯定。這節(jié)課再次讓我知道了,相信學(xué)生的創(chuàng)造力是我們設(shè)計教法的前提。

  在引導(dǎo)學(xué)生解決“粉筆的'體積”等這個問題時,課堂上有學(xué)生把它當作圓柱體積來求,提出:“誤差這么小,是可行的!倍夷俏粚W(xué)生要求的僅是一個大約的數(shù)值,所以用這種方法可以。但這種計算粉筆體積的方法可行嗎?如果我不提出疑義,也不加以說明,就會給學(xué)生造成“圓臺的體積可以用這兩種方法來計算”的錯誤認識,對學(xué)生的后續(xù)學(xué)習會造成一些不利的影響。我就這個問題引導(dǎo)學(xué)生進一步探索,使學(xué)生發(fā)現(xiàn)平面圖形中的一些規(guī)律照搬到立體圖形中有時會行不通,懂得知識并非一成不變的,有其發(fā)展性,初步理解三維空間物體與二維平面圖形的聯(lián)系與區(qū)別,為進一步學(xué)習積累經(jīng)驗。學(xué)生在探索過程中,雖不能很快獲得結(jié)論性的知識,但卻嘗試了科學(xué)探究的方法,形成良好的思維品質(zhì),增進了情感體驗。這樣,既保護了學(xué)生的創(chuàng)造性,又保證了教學(xué)內(nèi)容的科學(xué)性,就學(xué)生的發(fā)展而言,誰能說讓學(xué)生經(jīng)歷這樣探究的過程,不也比獲得現(xiàn)成的結(jié)論更富有積極的意義?

圓柱的體積反思8

  【學(xué)習目標】

  1、探索并掌握圓柱的體積計算公式。

  2、能運用公式計算圓柱的體積,并解決實際問題。

  【學(xué)習過程】

  一、板書課題

  師:同學(xué)們,今天我們來學(xué)習“圓柱的體積”(板書課題)。

  二、出示目標

  本節(jié)課我們的目標是:(出示)

  1、探索并掌握圓柱的體積計算公式。

  2、能運用公式計算圓柱的體積,并解決實際問題。

  了達到目標,下面請大家認真地看書。

  三、出示自學(xué)指導(dǎo)

  認真看課本第19頁到第20頁的例5和例6的內(nèi)容,重點看圓柱體積公式的推導(dǎo)過程和例6解題過程,想:

  1、圓柱的體積公式是如何推導(dǎo)出來的?

  2、圓柱的體積計算公式是什么?用字母如何表示?

  5分鐘后,比誰能做對檢測題!

  師:認真看書自學(xué),比誰自學(xué)的最認真,自學(xué)效果最好。下面自學(xué)競賽開始。

  四、先學(xué)

 。ㄒ唬┛磿

  學(xué)生認真看書,教師巡視,督促人人都在認真地看書。

  (二)檢測(找兩名學(xué)生板演,其余生寫在練習本上)

  第20頁“做一做”和第21頁第5題。

  要求:1、認真觀察,正確書寫,每一步都要寫出來。

  2、寫完的同學(xué)認真檢查。

  五、后教

  (一)更正

  師:寫完的同學(xué)請舉手。下面,請大家一起看黑板上這些題,發(fā)現(xiàn)問題的同學(xué)請舉手。(由差-中-好)

  (二)討論

  1、看第1題:認為算式列對的請舉手?

  【圓柱的體積=底面積×高】

  2、看第2題:認為算式列對的舉手?你是怎么思考的?

  3、看計算過程和結(jié)果,認為對的舉手?

  4、評正確率、板書,并讓學(xué)生同桌對改。

  今天你們表現(xiàn)實在是太好了,老師真為你們感到高興。老師這里有幾道練習題,敢不敢來試一試?(出示)

  六、補充練習:

  1、一個圓柱形鋼材,底面積是30立方厘米,高是60厘米,體積是多少立方厘米?

  2、一個圓柱體和一個長方形的體積相等,高也相等,那么它們的底面積()。

  3、把一個圓柱的側(cè)面展開,得到一個正方形,圓柱的底面半徑是5厘米,這個圓柱的高是()厘米,體積是()立方厘米。.

  下面,我們就來運用今天所學(xué)的知識來做作業(yè),比誰的`課堂作業(yè)能做得又對又快,字體還又端正。

  七、當堂訓(xùn)練(課本練習三,第21頁)

  作業(yè):第3、4、7、8題寫作業(yè)本上

  練習:第1題寫書上,第2、6、9、10題寫練習本上

  八、板書設(shè)計

  課題三:圓柱的體積

  圓柱的體積=底面積×高

  課后反思:

  本節(jié)課的教學(xué)內(nèi)容是九年義務(wù)教育六年級下冊的《圓柱的體積》,我教此內(nèi)容時,不按傳統(tǒng)的教學(xué)方法,而是采用新的教學(xué)理念,讓學(xué)生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識。對此,我作如下反思:

  一、學(xué)生學(xué)到了有價值的知識。

  學(xué)生通過實踐、探索、發(fā)現(xiàn),得到的知識是“活”的,這樣的知識對學(xué)生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案也不是老師告訴的,而是、學(xué)生在自己艱苦的學(xué)習中發(fā)現(xiàn)并從學(xué)生的口里說出來的這樣的知識具有個人意義,理解更深刻。

  二、培養(yǎng)了學(xué)生的科學(xué)精神和方法。

  新課程改革明確提出要“強調(diào)讓學(xué)生通過實踐增強探究和創(chuàng)新意識,學(xué)習科學(xué)研究的方法,培養(yǎng)科學(xué)態(tài)度和科學(xué)精神”。學(xué)生動手實踐、觀察得出結(jié)論的過程,就是科學(xué)研究的過程。

  三、促進了學(xué)生的思維發(fā)展。

  傳統(tǒng)的教學(xué)只關(guān)注教給學(xué)生多少知識,把學(xué)生當成知識的“容器”。學(xué)生的學(xué)習只是被動地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。而這里創(chuàng)設(shè)了豐富的教學(xué)情景,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識,從而促進了學(xué)生的思維發(fā)展。

  本節(jié)課采用新的教學(xué)方法,取得了較好的教學(xué)效果,不足之處是:由于學(xué)生自由討論、實踐和思考的時間較多,練習的時間較少。

圓柱的體積反思9

  本課主要內(nèi)容是圓柱的體積公式的推導(dǎo)及其應(yīng)用。因為公式的推導(dǎo)過程是個難點,因此在教學(xué)設(shè)計時,我采用新的教學(xué)理念,讓學(xué)生自己動手實踐、自主探索與合作交流,在實踐中體驗,幫助學(xué)生理解公式的來源,從而獲得知識。下面我從教學(xué)過程、教學(xué)策略、教學(xué)技能等方面談?wù)勛约旱囊恍┓此肌?/p>

  一、在教學(xué)過程的設(shè)計方面

  1、導(dǎo)入時,力求突破教材,有所創(chuàng)新

  圓柱的體積的導(dǎo)入,課本是先讓學(xué)生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學(xué)生們猜一猜。猜想計算方法固然有好處,但要讓學(xué)生馬上做實驗理解圓柱體積計算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,銜接性不強,不利于學(xué)生理解和掌握實驗的用意,課堂效果就會明顯不佳。于是我設(shè)計時不妨在回憶了長方體、正方體體積計算方法之后,接著復(fù)習一下圓面積計算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、

  流暢,便于學(xué)生的思維走向正確的方向,這時教師的引導(dǎo)才是行之有效的。不過應(yīng)該注意時間的控制,不能花費太多的時間。

  2、新課時,要實現(xiàn)人人參與,主動學(xué)習

  學(xué)生進行數(shù)學(xué)探究時,應(yīng)給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。在推導(dǎo)圓柱體積公式過程時,我讓學(xué)生經(jīng)歷先想—觀察—動手操作的過程。把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體;接著讓學(xué)生小組交流長方體的長和寬與圓柱的各部分有什么關(guān)系?圓柱的'體積怎樣計算的道理,從而推導(dǎo)出圓柱體積的計算公式。這樣學(xué)生親身參與操作,有了空間感覺的體驗,,也有了充分的思考空間。這樣設(shè)計我覺得能突破難點,課堂效果很好。

  3、練習時,形式多樣,層層遞進

  例題“練一練”中的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個彎的題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計算圓柱的體積,我在設(shè)計練習時動了一番腦,花心思去考慮怎樣才能讓學(xué)生用最短的時間完成不同類型的題目。通過反思,我概括出五種類型。

  a.已知圓柱底面積(s)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=sh。

  b.已知圓柱底面半徑(r)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=πr2h。

  c.已知圓柱底面直徑(d)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(d/2)2h。

  d.已知圓柱底面周長(c)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(c÷π÷2)2h。

  e.已知圓柱側(cè)面積(s側(cè))和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(s側(cè)÷h÷π÷2)2h。

  因為是第一課時所以在鞏固練習中,只要從前四種類型去考慮,做到面面俱到,逐層深入,由易到難,使學(xué)生真正掌握好計算圓柱體積的方法另外,還設(shè)計了解決生活中的問題,讓學(xué)生能學(xué)以致用解決生活中的問題。

  二、在教學(xué)策略方面

  我采用多媒體的直觀教具相結(jié)合的手段,在圓柱體積公式推導(dǎo)過程中指導(dǎo)學(xué)生充分利用手中的學(xué)具、教具,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流、總結(jié)歸納等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識,從而促進了學(xué)生的思維發(fā)展。而在鞏固練習這一環(huán)節(jié),我用多媒體發(fā)揮它大容量、節(jié)省時間的優(yōu)點。

  三、在教學(xué)技能方面

  學(xué)生通過實踐、探索、發(fā)現(xiàn),得到的知識是“活”的,這樣的知識對學(xué)生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案也不是老師告訴的,而是學(xué)生在自己艱苦的學(xué)習過程中發(fā)現(xiàn)并從學(xué)生的口里說出來的,這樣的知識具有個人意義,理解更深刻。但是我覺得這個引導(dǎo)的過程需要教師有認真準備,隨時能解決課堂上可能出現(xiàn)的一些問題。傳統(tǒng)的教學(xué)只關(guān)注教給學(xué)生多少知識,把學(xué)生當成知識的“容器”。學(xué)生的學(xué)習只是被動地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。而我在本課創(chuàng)設(shè)了豐富的教學(xué)情景。

  四、存在的問題

  不足之處是:由于這節(jié)課的設(shè)計是以學(xué)生為主、發(fā)揮學(xué)生的主體作用,要充分展示學(xué)生的思維過程,所以在學(xué)生動手實踐、交流討論和思考的時間上教師應(yīng)合理把握,不能時間較多,否則會導(dǎo)致練習的時間較少。

  另外,在練習設(shè)計上,題形雖然全,但覺得題量偏多,因為這部分練習涉及的計算多、難,這樣練習題還需精心設(shè)計。

圓柱的體積反思10

  在教學(xué)圓柱的體積時,我采用新的教學(xué)理念,讓學(xué)生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識。通過這節(jié)

  課的教學(xué),我覺得有以下幾個方面值得探討:

  一、聯(lián)系舊知,導(dǎo)入新知。

  圓柱的體積的導(dǎo)入,在回憶了長方體、正方體體積計算方法,并強調(diào)長方體、正方體的體積都可以用底面積乘高,接著復(fù)習一下圓面積計算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想:“圓柱體是否可以轉(zhuǎn)化成我們學(xué)過的圖形呢?”激發(fā)學(xué)生好奇心,獨立思考問題,探索問題的愿望。這樣聯(lián)系舊知,導(dǎo)入新知,思維過度自然,易接受新知。

  二、動手操作,探索新知。

  學(xué)生在探究新知時,教師要給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。教學(xué)“圓柱的體積”時,學(xué)生親身參與操作,先用小刀把一塊月餅切成一個圓柱體把圓柱的底面分成若干份(例如,分成12等份),然后把圓柱切開,再拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體。找一找:這個長方體的.長相當于圓柱的什么,寬是圓柱的什么,高是圓柱的什么。圓柱的體積就是長方體的體積,從而推導(dǎo)出圓柱體積的計算公式。

  三、課件展示,加深理解。

  為了直觀、形象,讓學(xué)生觀看課件:圓轉(zhuǎn)化成近似長方形的過程,使學(xué)生很容易猜想出圓柱體也可以轉(zhuǎn)化成近似的長方體來得出體積公式。在推導(dǎo)圓柱體積公式的過程中,要求學(xué)生想象:“如果把圓柱的底面平均分成32份、64份……切開后拼成的物體會有什么變化?”學(xué)生雖然能說出“拼成的物體越來越接近長方體! 但是,到底拼成的圖形怎樣更接近長方體?演示動畫后,學(xué)生不僅對這個切拼過程一目了然,同時又加深理解了圓柱體轉(zhuǎn)化成近似長方體的轉(zhuǎn)化方法。

  四、分層練習,發(fā)散思維。

  為了培養(yǎng)學(xué)生解題的靈活性,進行分層練習,拓展知識,發(fā)散思維。如:已知圓柱底面積和高,怎樣求圓柱體積;已知圓柱底面半徑和高,怎樣求圓柱體積;已知圓柱底面直徑和高,怎樣求圓柱體積;已知圓柱底面周長和高,怎樣求圓柱體積;已知圓柱側(cè)面積和高,怎樣求圓柱體積;已知圓柱底面積和體積,怎樣求高;已知圓柱體積和高,怎樣求底面積等。

  但是不成功的地方也有,如學(xué)生在操作時有些學(xué)生拼的不是長方體,而是其他的形狀,這里由于是上公開課的原因就沒有有針對性的講解,只做到了多數(shù)學(xué)生的指導(dǎo)而沒有做到面向全體學(xué)生,這點我覺得在課堂上很難做到。

  總之,通過這次的國培學(xué)習,使我的思想認識和課堂技能都有了新的認識,感謝國培!

  教材作為教學(xué)的憑借與依據(jù),只不過是編者對學(xué)科知識、國家要求與學(xué)生進行整和思考的結(jié)晶。但由于受時間與地域的影響,我們在執(zhí)行教材時不能把它作為一種“枷鎖”,而應(yīng)作為“跳板”——編者意圖與學(xué)生實際的“跳板”。因此,教學(xué)時,我們要精心研究教材,揣摩編者意圖、考慮學(xué)生實際,創(chuàng)造性地利用教材。

圓柱的體積反思11

  圓柱的體積這部分知識是學(xué)生在有了圓柱、圓和長方體的相關(guān)知識基礎(chǔ)上進行教學(xué)的。在知識和技能上,通過對圓柱體積的具體研究,理解圓柱體的體積公式的推導(dǎo)過程,會計算圓柱的體積;在方法的選擇上,抓信新舊知識的聯(lián)系,通過想象、實際操作,從經(jīng)歷和體驗中思考,培養(yǎng)學(xué)生科學(xué)的思維方法;貼近學(xué)生生活實際,創(chuàng)設(shè)情境,解決問題,體現(xiàn)數(shù)學(xué)知識“從生活中來到生活中去”的理念,激發(fā)學(xué)生的學(xué)習興趣和對科學(xué)知識的求知欲,使學(xué)生樂于探索,善于探究。

  一、讓學(xué)生在現(xiàn)實情境中體驗和理解數(shù)學(xué)

  《課程標準》指出:要創(chuàng)設(shè)與學(xué)生生活環(huán)境、知識背景密切相關(guān)的、又是學(xué)生感興趣的學(xué)習情境,讓學(xué)生在觀察、操作、猜測、交流、反思等活動中體會數(shù)學(xué)知識的產(chǎn)生、形成與發(fā)展的過程,獲得積極的情感體驗,感受數(shù)學(xué)的力量,同時掌握必要的基礎(chǔ)知識與基本技能。在本節(jié)課中,我給學(xué)生創(chuàng)設(shè)了生活情景(裝在杯子中的水的體積你會求嗎?圓柱形橡皮泥的體積你會求嗎?)學(xué)生聽到教師提的問題訓(xùn)在身邊的生活中,頗感興趣。學(xué)生經(jīng)過思考、討論、交流,找到了解決的方法。而且此環(huán)節(jié)還自然滲透了圓柱體(新問題)和長方體(已知)的知識聯(lián)系。在此基礎(chǔ)上教師又進一步從實際需要提出問題:如果要求某些建筑物中圓柱形柱子的體積,或是求壓路機滾筒的體積,能用剛才同學(xué)們想出來的辦法嗎?這一問題情境的創(chuàng)設(shè),激發(fā)學(xué)生從問題中思考尋求一種更廣泛的方法來解決圓柱體體積的欲望。

  二、鼓勵學(xué)生獨立思考,引導(dǎo)學(xué)生自主探索、合作交流

  數(shù)學(xué)學(xué)習過程充滿著觀察、實驗、模擬、推斷等探索性與挑戰(zhàn)性活動,因此,動手實踐、自主探究、合作交流是《課程標準》所倡導(dǎo)的.數(shù)學(xué)學(xué)習的主要方式。在本節(jié)課提示課題后,我先引導(dǎo)學(xué)生獨立思考要解決圓柱的體積問題,可以怎么辦?學(xué)生通過思考很快確定打算把圓柱轉(zhuǎn)化成長方體。那么怎樣來切割呢?此時采用小組討論交流的形式。同愛們有了圓面積計算公式推導(dǎo)的經(jīng)驗,經(jīng)過討論得出:把圓柱的底面沿直徑分成若干等份。在此基礎(chǔ)上,小組拿出學(xué)具進行了動手操作,拼成了一個近似的長方體。同學(xué)們在操作、比較中,圍繞圓柱體和長方體之間的聯(lián)系,抽象出圓柱體的體積公式。這個過程,學(xué)生從形象具體的知識形成過程(想象、操作、演示)中,認識得以升華(較抽象的認識——公式)。

  在探究的過程中,我不是安排了一整套指令讓學(xué)生進行程序操作,獲得一點基本技能,而是提供了相關(guān)知識背景、實驗素材,使用“對我們有幫助嗎?”“你有什么發(fā)現(xiàn)?”“你是怎么想的?”等這樣一些指向探索的話語鼓勵學(xué)生獨立思考、動手操作、合作探究,讓學(xué)生根據(jù)已有的知識經(jīng)驗創(chuàng)造性地建構(gòu)自己的數(shù)學(xué)。通過實驗、操作、自主探究,實現(xiàn)學(xué)生主體地位、學(xué)習方式的轉(zhuǎn)變,有效地培養(yǎng)學(xué)生的創(chuàng)新意識。教學(xué)中通過等分、切、拼將圓柱體拼成一個近似的長方體,再運用多媒體顯示由圓柱體到近似的長方體的變換過程,讓學(xué)生觀察、比較近似長方體與圓柱的關(guān)系,使圓柱體體積的計算公式推導(dǎo)過程完全展示在學(xué)生面前。使學(xué)生感悟到轉(zhuǎn)化的思想在幾何學(xué)習中的妙用。從而產(chǎn)生一種自我嘗試、主動探究、樂于發(fā)現(xiàn)的需要、動機和能力。

  三、建立切拼表象,滲透極限思想

  學(xué)生進行數(shù)學(xué)探究時,由于條件的限制,沒有更多的學(xué)具提供給學(xué)生,只一個教具。為了讓學(xué)生充分體會,我把操作的機會給了學(xué)生。接著再結(jié)合多媒體演示讓學(xué)生感受“把圓柱的底面分的份數(shù)越多,切開后,拼起來的圖形就越接近長方體;接著教師指導(dǎo)學(xué)生悟出這個長方體的長相當于圓柱的哪一部分的長度,寬是圓柱哪一部分的長度,高是圓柱的哪一部分的長度,圓柱的體積怎樣計算的道理,從而推導(dǎo)出圓柱體積的計算公式。學(xué)生基本沒有親身參與操作,非常遺憾。

  本節(jié)課我采用新的教學(xué)方法,取得了較好的教學(xué)效果,不足之處是:由于學(xué)生自由討論、實踐和思考的時間較多,練習的時間較少。

圓柱的體積反思12

  本節(jié)課的設(shè)計思路的優(yōu)點在于學(xué)習自主化。首先,我通過復(fù)習導(dǎo)入,揭示了本節(jié)課的學(xué)習主題,激發(fā)了學(xué)生的探索學(xué)習熱情。

  然后再以求圓柱的體積為主線,引導(dǎo)學(xué)生在課件展示中探索數(shù)學(xué)問題,認識到知識間的緊密聯(lián)系。學(xué)習自主化,指的是在整個教學(xué)過程中,我注重了學(xué)生的自主學(xué)習、獨立思考,使學(xué)生通過“說一說”“辨一辨”等途徑來突破教學(xué)的.重、難點,使學(xué)生深刻理解圓柱體積計算公式的推導(dǎo)過程,并通過習題幫助學(xué)生記憶圓柱體積的計算公式和運用圓柱體積計算公式來解決一些生活實際問題。

  但是,在具體的教學(xué)過程中,本課時的教學(xué)設(shè)計依然存在一些問題。比如:在凸現(xiàn)學(xué)習自主化這一學(xué)習過程時,我們應(yīng)給予學(xué)生更多的時間和空間來思考,使學(xué)生在發(fā)現(xiàn)圓柱體積計算方法的同時真正提高學(xué)生自主學(xué)習的能力,因為學(xué)生只有在發(fā)現(xiàn)問題和解決問題這一矛盾的相互碰撞中才能深刻理解知識、掌握知識。

圓柱的體積反思13

  對《圓柱的體積》一節(jié),備課階段,我跟馮老師討論過,3.19下午,又全程聆聽了三位教師的同課異構(gòu),領(lǐng)略了他們不同個性的教學(xué)風格。在我看來,盡管是同課異構(gòu),盡管是個性課堂,一些基本的原則還是要遵守的。例如,深入地理解教材,例如,盡可能地保持數(shù)學(xué)的邏輯嚴密性,等等。

  對于這節(jié)教材的理解,最嚴重的分歧可能來自圓柱的體積公式。教材為什么給出的是“V=Sh”而不是“V=πrh”。我想,這里的原因大概有兩個:一是要統(tǒng)一(柱體的)體積公式,減輕學(xué)生的記憶負擔。事實上,V=Sh也確實更能體現(xiàn)柱體體積的本質(zhì),不同柱體體積的.不同公式,只是進一步描述了它們的不同的S罷了。另一個原因,是為方便學(xué)生對公式推導(dǎo)過程的理解。當圓柱被分割為有限個曲面三棱柱并拼為準長方體時,半徑r只是接近而并沒有等于長方體的寬,只有這個分割被無限化(取極限)時,圓柱的半徑才能與長方體的寬相等。因此,與其讓學(xué)生去費解地或不求甚解地觀察“長方體的寬與圓柱的半徑的關(guān)系”,還不如只觀察兩者的底面積S。在我看來,這樣地處理,是新教材較舊教材高明之處,而有的教師之所以走回老路,恐怕是對新教材理解不到位的緣故。

  對于這節(jié)課的異構(gòu),分歧最大的地方可能是對探索或計算的側(cè)重,以及是否需要、是否可以有多種探索方法。從教材的表述看,這節(jié)課的新授完全圍繞著公式的提出(猜想)、推導(dǎo)(驗證)展開,其第一課時的教學(xué)重點無疑應(yīng)當放在公式的探索上。至于探索的途徑或方法,我認為,主要有兩個:一是轉(zhuǎn)化,把圓柱體轉(zhuǎn)化為長方體,二是驗算,假設(shè)猜想的公式是正確的,利用它算出結(jié)果并設(shè)法檢驗。例如,可以將圓柱形固體放到較大的液體量具中,通過比較圓柱體積的猜想值與液體體積的增長量,證明體積計算的正確性。也可以將圓柱體形狀的橡皮泥捏成長方體形狀,如果能夠在變形的過程中保持高的不變,則可以直接證明所猜想公式的正確性,否則,就要通過計算來作出間接的證明。如何理解教材中“堆硬幣”的意圖?我以為,這段教材的用意在于“提出猜想”而非驗證猜想。之所以這樣認為,原因有二,一是教材的表述,它說的是:“從‘堆硬幣’來看,用‘底面積乘高’可以計算出圓柱的體積!倍皇钦f圓柱的體積就是底面積乘高’。二是如果作為驗證方法,在邏輯上就犯了循環(huán)論證的錯誤,因為硬幣本身實際上也是圓柱,它的體積是否等于底面積乘高,本身就是要待驗證的。馮老師在教學(xué)中將其處理為“無數(shù)個圓疊加成為圓柱”,則使得它在邏輯上不再循環(huán)(雖然,這里的“積分過程”包含的極限思想要比“化圓為方”更難為小學(xué)生所理解。)。我認為,由于“堆硬幣”的目的在于換一個角度提出猜想,教學(xué)中當學(xué)生能夠提出猜想時,“疊圓成柱”的過程就顯得不那么非要不可了。而通過多媒體課件演示圓柱的“化圓為方”的過程卻是完全必要的。教師與學(xué)生一道經(jīng)歷了把十六等分的曲面三棱柱拼成“準長方體”之后,可以引導(dǎo)學(xué)生觀察這個長方體的“近似性”,并啟發(fā)他們想象當?shù)确值臄?shù)量增大到三十二、六十四、----的情況,在其想象之后,再用課件演示極限化的過程,大多數(shù)學(xué)生應(yīng)當是可以真正理解的。

圓柱的體積反思14

  教學(xué)目標:

  1.知識與技能:運用遷移規(guī)律,引導(dǎo)學(xué)生借助圓面積計算公式的推導(dǎo)方法來推導(dǎo)圓柱的體積計算公式,會用圓柱的體積公式計算圓柱形物體的體積。

  2.方法與過程:經(jīng)歷猜測、驗證、合作、動手操作等過程,體驗和理解圓柱體體積公式的推導(dǎo)過程。

  3情感、態(tài)度、價值觀:創(chuàng)設(shè)情境,激發(fā)學(xué)生學(xué)習的積極性。讓學(xué)生在主動學(xué)習的基礎(chǔ)上,逐步學(xué)會轉(zhuǎn)化的數(shù)學(xué)思想和數(shù)學(xué)法,培養(yǎng)學(xué)生解決實際問題的能力和培養(yǎng)學(xué)生抽象、概括的思維能力。

  教學(xué)重點和難點:

  圓柱體積公式推導(dǎo)過程;正確理解圓柱體積公式推導(dǎo)過程。

  教 具:

  圓柱的體積公式演示教具,圓柱的體積公式演示課件

  教學(xué)過程:

  一、教學(xué)回顧

  1、交代任務(wù):這節(jié)課我們來學(xué)習《圓柱的體積》。

  2、回憶導(dǎo)入

 。1)、請大家想一想,我們在學(xué)習圓的面積時,是怎樣把圓變成已學(xué)過的圖形再計算面積的?

 。2)、我們都學(xué)過那些立體圖形的體積公式。

  二、積極參與 探究感受

  1、猜測圓柱的體積和那些條件有關(guān)。(電腦演示)

  2、.探究推導(dǎo)圓柱的體積計算公式。

  小組合作討論:

  (1)將圓柱體切割拼成我們學(xué)過的什么立體圖形?

  (2)切拼前后的兩個物體什么變了?什么沒變?

  (3)切拼前后的兩個物體有什么聯(lián)系?

  課件演示拼、組的過程,同時演示一組動畫(將圓柱底面等分成32份、64份??),讓學(xué)生明確:分成的扇形越多,拼成的`立體圖形就越接近于長方體。

 、侔褕A柱拼成長方體后,形狀變了,體積不變。(板書:長方體的體積=圓柱的體積)

 、谄闯傻拈L方體的底面積等于圓柱的底面積,高就是圓柱的高。配合回答,演示課件,閃爍相應(yīng)的部位,并板書相應(yīng)的內(nèi)容。)

 、蹐A柱的體積=底面積×高 字母公式是V=Sh(板書公式)

  2、練一練:一根圓柱形木料,底面積為75平方厘米,長90厘米,它的體積是多少?

  3、要用這個公式計算圓柱的體積必須知道什么條件?

  三、練習

  1、填空

  (1)、圓柱體通過切拼轉(zhuǎn)化成近似的 ( ) 體。這個長方體的底面積等于圓柱體的( ),這個長方體的高等于圓柱體() 。因為長方體的體積等于( ),所以,圓柱體的體積等于( )用字母表示() 。

 。2)、底面積是 10平方米,高是2米,體積是( )。

 。3)、底面半徑是2分米,高是5分米,體積是( )。 2討論:

  (1)已知圓柱底面的半徑和高,怎樣求圓柱的體積

  V= 兀r2× h

  (2)已知圓柱底面的直徑和高,怎樣求圓柱的體積

  V=兀(d÷2)2×h

  (3)已知圓柱底面的周長和高,怎樣求圓柱的體積

  V=兀(C÷!2) ×h

  3、練習:已知半徑和高求體積,已知直徑和高求體積。

  四、小結(jié)或質(zhì)疑

  五、作業(yè)

  板書設(shè)計:

  圓柱的體積

  長方體的體積=底面積x高

  圓柱的體積=底面積x高

  V=Sh

圓柱的體積反思15

  本節(jié)課教學(xué)設(shè)計從回憶舊知入手,通過猜測、觀察、交流、驗證、歸納等數(shù)學(xué)活動,讓學(xué)生經(jīng)歷探索新知的全過程,鼓勵學(xué)生獨立思考,引導(dǎo)學(xué)生自主探索、合作交流,讓學(xué)生根據(jù)已有的知識經(jīng)驗創(chuàng)造性地建構(gòu)圓柱體積計算公式,鼓勵解決問題策略的多樣化,讓學(xué)生的思維得到發(fā)展,創(chuàng)新精神、實踐能力得到提高。

  新授部分,經(jīng)歷了問題引入、猜測、自主探索、合作交流、驗證歸納五個環(huán)節(jié),環(huán)環(huán)相扣,步步深入。合作交流這個環(huán)節(jié)給了學(xué)生充足的時間去探索、交流,通過把圓柱切拼成近似的長方體,再對比二者的體積、底面積、高之間的聯(lián)系,推導(dǎo)出了圓柱的體積計算公式,從而得出圓柱和長方體有著相同的體積計算公式,然后要求學(xué)生回顧一下我們是怎樣得到“圓柱體的體積=底面積×高”這個結(jié)論的。經(jīng)歷了公式的推導(dǎo)過程,也讓學(xué)生體驗了數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受到數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性。

  課堂上,我將引導(dǎo)啟發(fā)、自主探究與合作交流等多種教學(xué)方式相結(jié)合,借助于多媒體課件化靜為動,把教師說不清道不明,學(xué)生不易理解的圓柱切拼成近似長方體的轉(zhuǎn)化過程一目了然地展現(xiàn)在學(xué)生面前。教學(xué)設(shè)計充分體現(xiàn)了“以學(xué)生為中心”的思想,真正方便了學(xué)生學(xué)習。做到根據(jù)教學(xué)內(nèi)容的實際需要,充分發(fā)揮多媒體技術(shù)的優(yōu)勢,突出教學(xué)重點,突破教學(xué)難點,豐富了教學(xué)內(nèi)容,精彩了課堂,激發(fā)了學(xué)生的學(xué)習興趣。

  學(xué)生在數(shù)學(xué)課堂上建立起新概念、習得規(guī)律之后,必須完成一定數(shù)量的數(shù)學(xué)練習題,才能鞏固所學(xué)知識。本節(jié)課,我充分挖掘習題的價值,在鞏固中拓展,讓學(xué)生的思維不停留于某一固定的.模式中,而能靈活應(yīng)變,變有限為無限,讓不同層次學(xué)生的思維水平在原有水平基礎(chǔ)上都得以提升。

  不足之處:課件代替了板書(由于課前班班通出現(xiàn)小小故障,我在打開課件時有點著急,課件出示錯誤,又耽誤了時間,沒有在黑板上板書課題)。時間分配不夠合理,練習時板演學(xué)生太少(合作交流環(huán)節(jié)給了學(xué)生大量的時間去探索、交流,在練習時已經(jīng)沒有足夠的時間了,就讓一個學(xué)生板演了,致使后邊的拓展提高沒來得及進行,就進行檢測了)。教師的評價方式單一。

  改進措施:每節(jié)課要準備充分,提前候課,避免出現(xiàn)差錯,耽誤時間,練習量不夠或完不成任務(wù)。課堂上要多關(guān)注中等偏下的學(xué)生,老師的評價機制要多樣,讓他們學(xué)會傾聽,樂于學(xué)習,多給他們展示交流的機會。課堂上課件只起一個輔助作用,不能喧賓奪主。

  今后還要一如繼往地做好日教研,上完課及時與本組成員溝通、交流,讓課堂教學(xué)更高效。

【圓柱的體積反思】相關(guān)文章:

圓柱的體積反思03-02

圓柱的體積反思精選(15篇)03-02

《圓柱的體積》04-29

圓柱的體積反思【匯總15篇】03-03

圓柱的體積作文08-22

《長方體與正方體的體積計算》反思08-13

《圓柱與圓錐》知識點06-27

圓錐體積公式04-02

《圓柱和圓錐的認識》教學(xué)片段及評析08-16