av手机免费在线观看,国产女人在线视频,国产xxxx免费,捆绑调教一二三区,97影院最新理论片,色之久久综合,国产精品日韩欧美一区二区三区

高一數(shù)學(xué)知識點總結(jié)

時間:2024-09-06 11:58:01 數(shù)學(xué) 我要投稿

高一數(shù)學(xué)知識點總結(jié)15篇(精)

  總結(jié)在一個時期、一個年度、一個階段對學(xué)習(xí)和工作生活等情況加以回顧和分析的一種書面材料,它可以幫助我們總結(jié)以往思想,發(fā)揚成績,不如立即行動起來寫一份總結(jié)吧。你所見過的總結(jié)應(yīng)該是什么樣的?以下是小編整理的高一數(shù)學(xué)知識點總結(jié),希望能夠幫助到大家。

高一數(shù)學(xué)知識點總結(jié)15篇(精)

高一數(shù)學(xué)知識點總結(jié)1

  1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標(biāo)及對稱軸如下表:

  解析式

  頂點坐標(biāo)

  對稱軸

  y=ax^2

  (0,0)

  x=0

  y=a(x-h)^2

  (h,0)

  x=h

  y=a(x-h)^2+k

  (h,k)

  x=h

  y=ax^2+bx+c

  (-b/2a,[4ac-b^2]/4a)

  x=-b/2a

  當(dāng)h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

  當(dāng)h<0時,則向左平行移動|h|個單位得到.

  當(dāng)h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;

  當(dāng)h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

  當(dāng)h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

  當(dāng)h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

  因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標(biāo)、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

  2.拋物線y=ax^2+bx+c(a≠0)的圖象:當(dāng)a>0時,開口向上,當(dāng)a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標(biāo)是(-b/2a,[4ac-b^2]/4a).

  3.拋物線y=ax^2+bx+c(a≠0),若a>0,當(dāng)x≤-b/2a時,y隨x的'增大而減小;當(dāng)x≥-b/2a時,y隨x的增大而增大.若a<0,當(dāng)x≤-b/2a時,y隨x的增大而增大;當(dāng)x≥-b/2a時,y隨x的增大而減小.

  4.拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點:

  (1)圖象與y軸一定相交,交點坐標(biāo)為(0,c);

  (2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

  (a≠0)的兩根.這兩點間的距離AB=|x?-x?|

  當(dāng)△=0.圖象與x軸只有一個交點;

  當(dāng)△<0.圖象與x軸沒有交點.當(dāng)a>0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y>0;當(dāng)a<0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y<0.

  5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當(dāng)x=-b/2a時,y最小(大)值=(4ac-b^2)/4a.

  頂點的橫坐標(biāo),是取得最值時的自變量值,頂點的縱坐標(biāo),是最值的取值.

  6.用待定系數(shù)法求二次函數(shù)的解析式

  (1)當(dāng)題給條件為已知圖象經(jīng)過三個已知點或已知x、y的三對對應(yīng)值時,可設(shè)解析式為一般形式:

  y=ax^2+bx+c(a≠0).

  (2)當(dāng)題給條件為已知圖象的頂點坐標(biāo)或?qū)ΨQ軸時,可設(shè)解析式為頂點式:y=a(x-h)^2+k(a≠0).

  (3)當(dāng)題給條件為已知圖象與x軸的兩個交點坐標(biāo)時,可設(shè)解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).

  7.二次函數(shù)知識很容易與其它知識綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現(xiàn).

高一數(shù)學(xué)知識點總結(jié)2

  不等式

  不等關(guān)系

  了解現(xiàn)實世界和日常生活中的不等關(guān)系,了解不等式(組)的實際背景.

  (2)一元二次不等式

 、贂䦶膶嶋H情境中抽象出一元二次不等式模型.

  ②通過函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.

 、蹠庖辉尾坏仁,對給定的一元二次不等式,會設(shè)計求解的.程序框圖.

  (3)二元一次不等式組與簡單線性規(guī)劃問題

 、贂䦶膶嶋H情境中抽象出二元一次不等式組.

 、诹私舛淮尾坏仁降膸缀我饬x,能用平面區(qū)域表示二元一次不等式組.

 、蹠䦶膶嶋H情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.

  (4)基本不等式:

 、倭私饣静坏仁降淖C明過程.

  ②會用基本不等式解決簡單的(小)值問題圓的輔助線一般為連圓心與切線或者連圓心與弦中點

高一數(shù)學(xué)知識點總結(jié)3

  一、集合有關(guān)概念

  1. 集合的含義

  2. 集合的中元素的三個特性:

  (1) 元素的確定性,

  (2) 元素的互異性,

  (3) 元素的無序性,

  3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  (1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  (2) 集合的表示方法:列舉法與描述法。

  ? 注意:常用數(shù)集及其記法:

  非負(fù)整數(shù)集(即自然數(shù)集) 記作:N

  正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實數(shù)集R

  1) 列舉法:{a,b,c……}

  2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

  3) 語言描述法:例:{不是直角三角形的三角形}

  4) Venn圖:

  4、集合的分類:

  (1) 有限集 含有有限個元素的集合

  (2) 無限集 含有無限個元素的集合

  (3) 空集 不含任何元素的集合 例:{x|x2=-5}

  二、集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

  2.“相等”關(guān)系:A=B (5≥5,且5≤5,則5=5)

  實例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”

  即:① 任何一個集合是它本身的子集。A?A

 、谡孀蛹:如果A?B,且A? B那就說集合A是集合B的真子集,記作A B(或B A)

 、廴绻 A?B, B?C ,那么 A?C

  ④ 如果A?B 同時 B?A 那么A=B

  3. 不含任何元素的集合叫做空集,記為Φ

  規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

  ? 有n個元素的集合,含有2n個子集,2n-1個真子集

  三、集合的運算

  運算類型 交 集 并 集 補 集

  定 義 由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}.

  由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:A B(讀作‘A并B’),即A B ={x|x A,或x B}).

  設(shè)S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

  二、函數(shù)的有關(guān)概念

  1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的.一個函數(shù).記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域.

  注意:

  1.定義域:能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域。

  求函數(shù)的定義域時列不等式組的主要依據(jù)是:

  (1)分式的分母不等于零;

  (2)偶次方根的被開方數(shù)不小于零;

  (3)對數(shù)式的真數(shù)必須大于零;

  (4)指數(shù)、對數(shù)式的底必須大于零且不等于1.

  (5)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.

  (6)指數(shù)為零底不可以等于零,

  (7)實際問題中的函數(shù)的定義域還要保證實際問題有意義.

  相同函數(shù)的判斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的字母無關(guān));②定義域一致 (兩點必須同時具備)

  2.值域 : 先考慮其定義域

  (1)觀察法

  (2)配方法

  (3)代換法

  3. 函數(shù)圖象知識歸納

  (1)定義:在平面直角坐標(biāo)系中,以函數(shù) y=f(x) , (x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點P(x,y)的集合C,叫做函數(shù) y=f(x),(x ∈A)的圖象.C上每一點的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標(biāo)的點(x,y),均在C上 .

  (2) 畫法

  A、 描點法:

  B、 圖象變換法

  常用變換方法有三種

  1) 平移變換

  2) 伸縮變換

  3) 對稱變換

  4.區(qū)間的概念

  (1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間

  (2)無窮區(qū)間

  (3)區(qū)間的數(shù)軸表示.

  5.映射

  一般地,設(shè)A、B是兩個非空的集合,如果按某一個確定的對應(yīng)法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應(yīng),那么就稱對應(yīng)f:A B為從集合A到集合B的一個映射。記作f:A→B

  6.分段函數(shù)

  (1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。

  (2)各部分的自變量的取值情況.

  (3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

  補充:復(fù)合函數(shù)

  如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復(fù)合函數(shù)。

  二.函數(shù)的性質(zhì)

  1.函數(shù)的單調(diào)性(局部性質(zhì))

  (1)增函數(shù)

  設(shè)函數(shù)y=f(x)的定義域為I,如果對于定義域I內(nèi)的某個區(qū)間D內(nèi)的任意兩個自變量x1,x2,當(dāng)x1

  如果對于區(qū)間D上的任意兩個自變量的值x1,x2,當(dāng)x1f(x2),那么就說f(x)在這個區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調(diào)減區(qū)間.

  注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);

  (2) 圖象的特點

  如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.

  (3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法

  (A) 定義法:

  ○1 任取x1,x2∈D,且x1

  ○2 作差f(x1)-f(x2);

  ○3 變形(通常是因式分解和配方);

  ○4 定號(即判斷差f(x1)-f(x2)的正負(fù));

  ○5 下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).

  (B)圖象法(從圖象上看升降)

  (C)復(fù)合函數(shù)的單調(diào)性

  復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”

  注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.

  8.函數(shù)的奇偶性(整體性質(zhì))

  (1)偶函數(shù)

  一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).

  (2).奇函數(shù)

  一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).

  (3)具有奇偶性的函數(shù)的圖象的特征

  偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱.

  利用定義判斷函數(shù)奇偶性的步驟:

  ○1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點對稱;

  ○2確定f(-x)與f(x)的關(guān)系;

  ○3作出相應(yīng)結(jié)論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數(shù);若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數(shù).

  (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;

  (3)利用定理,或借助函數(shù)的圖象判定 .

  9、函數(shù)的解析表達(dá)式

  (1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個變量之間的函數(shù)關(guān)系時,一是要求出它們之間的對應(yīng)法則,二是要求出函數(shù)的定義域.

  (2)求函數(shù)的解析式的主要方法有:

  1) 湊配法

  2) 待定系數(shù)法

  3) 換元法

  4) 消參法

  10.函數(shù)最大(小)值(定義見課本p36頁)

  ○1 利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值

  ○2 利用圖象求函數(shù)的最大(小)值

  ○3 利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值:

  如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有最大值f(b);

  如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);

高一數(shù)學(xué)知識點總結(jié)4

 、殴顬閐的等差數(shù)列,各項同加一數(shù)所得數(shù)列仍是等差數(shù)列,其公差仍為d.

  ⑵公差為d的等差數(shù)列,各項同乘以常數(shù)k所得數(shù)列仍是等差數(shù)列,其公差為kd.

 、侨魗a}、為等差數(shù)列,則{a±b}與{ka+b}(k、b為非零常數(shù))也是等差數(shù)列.

  ⑷對任何m、n,在等差數(shù)列{a}中有:a=a+(n-m)d,特別地,當(dāng)m=1時,便得等差數(shù)列的通項公式,此式較等差數(shù)列的通項公式更具有一般性.

  ⑸、一般地,如果l,k,p,…,m,n,r,…皆為自然數(shù),且l+k+p+…=m+n+r+…(兩邊的自然數(shù)個數(shù)相等),那么當(dāng){a}為等差數(shù)列時,有:a+a+a+…=a+a+a+….

  ⑹公差為d的等差數(shù)列,從中取出等距離的項,構(gòu)成一個新數(shù)列,此數(shù)列仍是等差數(shù)列,其公差為kd(k為取出項數(shù)之差).

 、巳绻鹻a}是等差數(shù)列,公差為d,那么,a,a,…,a、a也是等差數(shù)列,其公差為-d;在等差數(shù)列{a}中,a-a=a-a=md.(其中m、k、)

 、淘诘炔顢(shù)列中,從第一項起,每一項(有窮數(shù)列末項除外)都是它前后兩項的等差中項.

 、彤(dāng)公差d>0時,等差數(shù)列中的數(shù)隨項數(shù)的增大而增大;當(dāng)d

 、卧O(shè)a,a,a為等差數(shù)列中的三項,且a與a,a與a的項距差之比=(≠-1),則a=.

 、艛(shù)列{a}為等差數(shù)列的充要條件是:數(shù)列{a}的`前n項和S可以寫成S=an+bn的形式(其中a、b為常數(shù)).

 、圃诘炔顢(shù)列{a}中,當(dāng)項數(shù)為2n(nN)時,S-S=nd,=;當(dāng)項數(shù)為(2n-1)(n)時,S-S=a,=.

 、侨魯(shù)列{a}為等差數(shù)列,則S,S-S,S-S,…仍然成等差數(shù)列,公差為.

 、热魞蓚等差數(shù)列{a}、的前n項和分別是S、T(n為奇數(shù)),則=.

 、稍诘炔顢(shù)列{a}中,S=a,S=b(n>m),則S=(a-b).

 、实炔顢(shù)列{a}中,是n的一次函數(shù),且點(n,)均在直線y=x+(a-)上.

 、擞浀炔顢(shù)列{a}的前n項和為S.①若a>0,公差d0,則當(dāng)a≤0且a≥0時,S小.

高一數(shù)學(xué)知識點總結(jié)5

  第一章:解三角形

  1、正弦定理:在C中,a、b、c分別為角、、C的對邊,R為C的外接圓的半徑,則有asinbsina2RcsinC2R.

  2、正弦定理的變形公式:①a2Rsin,b2Rsin,c2RsinC;②sin,sinb2R,sinCc2R;(正弦定理的變形經(jīng)常用在有三角函數(shù)的等式中)③a:b:csin:sin:sinC;④abcsinsinsinCsinsinsinC111bcsinabsinCacsin.222abc.

  3、三角形面積公式:SC

  4、余定理:在C中,有a2b2c22bccos,b2a2c22accos,cab2abcosC.222

  5、余弦定理的推論:cosbca2bc222,cosacb2ac222,cosCabc2ab222.

  6、設(shè)a、b、c是C的角、、C的對邊,則:①若a2b2c2,則C90為直角三角形;②若a2b2c2,則C90為銳角三角形;③若a2b2c2,則C90為鈍角三角形.

  第二章:數(shù)列

  1、數(shù)列:按照一定順序排列著的一列數(shù).

  2、數(shù)列的項:數(shù)列中的每一個數(shù).

  3、有窮數(shù)列:項數(shù)有限的數(shù)列.

  4、無窮數(shù)列:項數(shù)無限的數(shù)列.

  5、遞增數(shù)列:從第2項起,每一項都不小于它的前一項的數(shù)列.

  6、遞減數(shù)列:從第2項起,每一項都不大于它的前一項的數(shù)列.

  7、常數(shù)列:各項相等的數(shù)列.

  8、擺動數(shù)列:從第2項起,有些項大于它的前一項,有些項小于它的前一項的數(shù)列.

  9、數(shù)列的通項公式:表示數(shù)列an的第n項與序號n之間的關(guān)系的公式.

  10、數(shù)列的遞推公式:表示任一項an與它的前一項an1(或前幾項)間的關(guān)系的公式.

  11、如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),則這個數(shù)列稱為等差數(shù)列,這個常數(shù)稱為等差數(shù)列的公差.

  12、由三個數(shù)a,,b組成的等差數(shù)列可以看成最簡單的等差數(shù)列,則稱為a與b的等差中項.若bac2,則稱b為a與c的等差中項.

  13、若等差數(shù)列an的首項是a1,公差是d,則ana1n1d.通項公式的變形:①anamnmd;②a1ann1d;③d⑤danamnmana1n1;④nana1d1;

  14、若an是等差數(shù)列,且mnpq(m、n、p、q),則amanapaq;若an是等差數(shù)列,且2npq(n、p、q),則2anapaq;下角標(biāo)成等差數(shù)列的項仍是等差數(shù)列;連續(xù)m項和構(gòu)成的數(shù)列成等差數(shù)列。

  15、等差數(shù)列的前n項和的公式:①Snna1an2;②Snna1nn12d.

  16、等差數(shù)列的前n項和的性質(zhì):①若項數(shù)為2nn,則S2nnanan1,且S偶S奇nd,S奇S偶anan1.②若項數(shù)為2n1n,則S2n12n1an,且S奇S偶an,S奇S偶nn1(其中S奇nan,S偶n1an).

  17、如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù),則這個數(shù)列稱為等比數(shù)列,這個常數(shù)稱為等比數(shù)列的公比.

  18、在a與b中間插入一個數(shù)G,使a,G,b成等比數(shù)列,則G稱為a與b的等比中項.若G2ab,則稱G為a與b的等比中項.

  19、若等比數(shù)列an的首項是a1,公比是q,則ana1q.

  20、通項公式的變形:①anamq;②a1anqn1;③qn1ana1;④qnmanam.

  21、若an是等比數(shù)列,且mnpq(m、n、p、q),則amanapaq;若an是等比數(shù)列,且2npq(n、p、q),則anapaq;下角標(biāo)成等差數(shù)列的項仍是等比數(shù)列;連續(xù)m2項和構(gòu)成的數(shù)列成等比數(shù)列。

  22、等比數(shù)列an的前n項和的公式:Sna11qnaaq.1nq11q1qq1時,Sna11qa11qq,即常數(shù)項與q項系數(shù)互為相反數(shù)。

  23、等比數(shù)列的前n項和的性質(zhì):①若項數(shù)為2nn,則SS偶奇q.n②SnmSnqSm.③Sn,S2nSn,S3nS2n成等比數(shù)列.

  24、an與Sn的關(guān)系:anSnSn1S1n2n1

  一些方法:

  一、求通項公式的方法:

  1、由數(shù)列的前幾項求通項公式:待定系數(shù)法

  ①若相鄰兩項相減后為同一個常數(shù)設(shè)為anknb,列兩個方程求解;

 、谌粝噜弮身椣鄿p兩次后為同一個常數(shù)設(shè)為anan2bnc,列三個方程求解;③若相鄰兩項相減后相除后為同一個常數(shù)設(shè)為anaq

  2、由遞推公式求通項公式:

 、偃艋喓鬄閍n1and形式,可用等差數(shù)列的通項公式代入求解;②若化簡后為an1anf(n),形式,可用疊加法求解;

 、廴艋喓鬄閍n1anq形式,可用等比數(shù)列的通項公式代入求解;

  ④若化簡后為an1kanb形式,則可化為(an1x)k(anx),從而新數(shù)列{anx}是等比數(shù)列,用等比數(shù)列求解{anx}的通項公式,再反過來求原來那個。(其中x是用待定系數(shù)法來求得)3、由求和公式求通項公式:

  ①a1S1②anSnSn1③檢驗a1是否滿足an,若滿足則為an,不滿足用分段函數(shù)寫。

  4、其他

 。1)anan1fn形式,fn便于求和,方法:迭加;

  例如:anan1n1有:anan1n1a2a13a3a24anan1n1各式相加得ana134n1a1nb,q為相除后的常數(shù),列兩個方程求解;

  n4n1(2)anan12anan1形式,同除以anan1,構(gòu)造倒數(shù)為等差數(shù)列;

  anan1anan121an1例如:anan12anan1,則1,即為以-2為公差的等差數(shù)列。anan1(3)anqan1m形式,q1,方法:構(gòu)造:anxqan1x為等比數(shù)列;

  例如:an2an12,通過待定系數(shù)法求得:an22an12,即an2等比,公比為2。(4)anqan1pnr形式:構(gòu)造:anxnyqan1xn1y為等比數(shù)列;(5)anqan1p形式,同除p,轉(zhuǎn)化為上面的幾種情況進(jìn)行構(gòu)造;因為anqan1pn,則anpnqan1ppn11,若qp1轉(zhuǎn)化為(1)的.方法,若不為1,轉(zhuǎn)化為(3)的方法

  二、等差數(shù)列的求和最值問題:(二次函數(shù)的配方法;通項公式求臨界項法)

 、偃簪谌鬭k0,則Sn有最大值,當(dāng)n=k時取到的最大值k滿足d0a0k1a10a10ak0,則Sn有最小值,當(dāng)n=k時取到的最大值k滿足d0a0k1

  三、數(shù)列求和的方法:

  ①疊加法:倒序相加,具備等差數(shù)列的相關(guān)特點的,倒序之后和為定值;

 、阱e位相減法:適用于通項公式為等差的一次函數(shù)乘以等比的數(shù)列形式,如:an2n13;n③分式時拆項累加相約法:適用于分式形式的通項公式,把一項拆成兩個或多個的差的形式。如:an1nn11n1n1,an12n12n1111等;22n12n1④一項內(nèi)含有多部分的拆開分別求和法:適用于通項中能分成兩個或幾個可以方便求和的部分,如:an2n1等;

  四、綜合性問題中

  ①等差數(shù)列中一些在加法和乘法中設(shè)一些數(shù)為ad和ad類型,這樣可以相加約掉,相乘為平方差;②等比數(shù)列中一些在加法和乘法中設(shè)一些數(shù)為aq和aq類型,這樣可以相乘約掉。

  第三章:不等式

  1、ab0ab;ab0ab;ab0ab.比較兩個數(shù)的大小可以用相減法;相除法;平方法;開方法;倒數(shù)法等等。

  2、不等式的性質(zhì):①abba;②ab,bcac;③abacbc;④ab,c0acbc,ab,c0acbc;⑤ab,cdacbd;⑥ab0,cd0acbd;⑦ab0ab⑧ab0nnnn,n1;anbn,n1.

  3、一元二次不等式:只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的不等式.

  4、二次函數(shù)的圖象、一元二次方程的根、一元二次不等式的解集間的關(guān)系:判別式b4ac201二次函數(shù)yaxbxc2a0的圖象有兩個相異實數(shù)根一元二次方程axbxc02有兩個相等實數(shù)根a0的根axbxc0一元二次不等式的解集2x1,2b2ax1x2b2a沒有實數(shù)根x1x2a0axbxc02xxx1或xx2bxx2aRa0xx1xx2

  5、二元一次不等式:含有兩個未知數(shù),并且未知數(shù)的次數(shù)是1的不等式.

  6、二元一次不等式組:由幾個二元一次不等式組成的不等式組.

  7、二元一次不等式(組)的解集:滿足二元一次不等式組的x和y的取值構(gòu)成有序數(shù)對x,y,所有這樣的有序數(shù)對x,y構(gòu)成的集合.

  8、在平面直角坐標(biāo)系中,已知直線xyC0,坐標(biāo)平面內(nèi)的點x0,y0.①若0,x0y0C0,則點x0,y0在直線xyC0的上方.②若0,x0y0C0,則點x0,y0在直線xyC0的下方.

  9、在平面直角坐標(biāo)系中,已知直線xyC0.①若0,則xyC0表示直線xyC0上方的區(qū)域;xyC0表示直線xyC0下方的區(qū)域.②若0,則xyC0表示直線xyC0下方的區(qū)域;xyC0表示直線xyC0上方的區(qū)域.

  10、線性約束條件:由x,y的不等式(或方程)組成的不等式組,是x,y的線性約束條件.目標(biāo)函數(shù):欲達(dá)到最大值或最小值所涉及的變量x,y的解析式.線性目標(biāo)函數(shù):目標(biāo)函數(shù)為x,y的一次解析式.線性規(guī)劃問題:求線性目標(biāo)函數(shù)在線性約束條件下的最大值或最小值問題.可行解:滿足線性約束條件的解x,y.可行域:所有可行解組成的集合.最優(yōu)解:使目標(biāo)函數(shù)取得最大值或最小值的可行解.

  11、設(shè)a、b是兩個正數(shù),則ab稱為正數(shù)a、b的算術(shù)平均數(shù),ab稱為正數(shù)a、b的幾何平均數(shù).

  12、均值不等式定理:若a0,b0,則ab2ab,即ab2ab.

  13、常用的基本不等式:①a2b22aba,bR;22②abab2a,bR;③abab2a2b2ab22a0,b0;④22a,bR.

  14、極值定理:設(shè)x、y都為正數(shù),則有s(和為定值),則當(dāng)xy時,積xy取得最大值s2⑴若xy.4⑵若xyp(積為定值),則當(dāng)xy時,和xy取得最小值2p.

高一數(shù)學(xué)知識點總結(jié)6

  必修一

  一、集合

  一、集合有關(guān)概念1.集合的含義

  2.集合的中元素的三個特性:

  (1)元素的確定性如:世界上最高的山

  (2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

  3.集合的表示:{}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,

  北冰洋}

  (1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}(2)集合的表示方法:列舉法與描述法。注意:常用數(shù)集及其記法:

  非負(fù)整數(shù)集(即自然數(shù)集)記作:N

  正整數(shù)集N*或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R1)列舉法:{a,b,c}

  2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的

  方法。{xR|x-3>2},{x|x-3>2}

  3)語言描述法:例:{不是直角三角形的三角形}4)Venn圖:4、集合的分類:

  (1)有限集含有有限個元素的集合(2)無限集含有無限個元素的集合2

  (3)空集不含任何元素的集合例:{x|x=-5}

  二、集合間的基本關(guān)系1.“包含”關(guān)系子集

  注意:AB有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)2

  實例:設(shè)A={x|x-1=0}B={-1,1}“元素相同則兩集合相等”即:①任何一個集合是它本身的子集。AA

 、谡孀蛹:如果AB,且AB那就說集合A是集合B的真子集,記作AB(或BA)

 、廴绻鸄B,BC,那么AC④如果AB同時BA那么A=B

  3.不含任何元素的集合叫做空集,記為Φ規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。nn-1

  有n個元素的集合,含有2個子集,2個真子集

  二、函數(shù)

  1、函數(shù)定義域、值域求法綜合

  2.、函數(shù)奇偶性與單調(diào)性問題的解題策略3、恒成立問題的求解策略4、反函數(shù)的幾種題型及方法

  5、二次函數(shù)根的問題一題多解&指數(shù)函數(shù)y=a^x

  a^a*a^b=a^a+b(a>0,a、b屬于Q)(a^a)^b=a^ab(a>0,a、b屬于Q)(ab)^a=a^a*b^a(a>0,a、b屬于Q)指數(shù)函數(shù)對稱規(guī)律:

  1、函數(shù)y=a^x與y=a^-x關(guān)于y軸對稱2、函數(shù)y=a^x與y=-a^x關(guān)于x軸對稱

  3、函數(shù)y=a^x與y=-a^-x關(guān)于坐標(biāo)原點對稱&對數(shù)函數(shù)y=loga^x

  如果a0,且a1,M0,N0,那么:1loga(MMN)logaM+logaN;○

  2loga○logaM-logaN;n3○logaMNnlogaM(nR).注意:換底公式logcblogab(a0,且a1;c0,且c1;b0).冪函數(shù)y=x^a(a屬于R)logca1、冪函數(shù)定義:一般地,形如yx(aR)的函數(shù)稱為冪函數(shù),其中為常數(shù).

  2、冪函數(shù)性質(zhì)歸納.

  (1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過點(1,1);(2)0時,冪函數(shù)的圖象通過原點,并且在區(qū)間[0,)上是增函數(shù).特別地,當(dāng)1時,冪函數(shù)的圖象下凸;當(dāng)01時,冪函數(shù)的圖象上凸;(3)0時,冪函數(shù)的圖象在區(qū)間(0,)上是減函數(shù).在第一象限內(nèi),當(dāng)x從右邊趨向原點時,圖象在y軸右方無限地逼近y軸正半軸,當(dāng)x趨于時,圖象在x軸上方無限地逼近x軸正半軸.

  方程的根與函數(shù)的零點

  1、函數(shù)零點的概念:對于函數(shù)yf(x)(xD),把使f(x)0成立的實數(shù)x叫做函數(shù)yf(x)(xD)的零點。

  2、函數(shù)零點的意義:函數(shù)yf(x)的零點就是方程f(x)0實數(shù)根,亦即函數(shù)yf(x)的圖象與x軸交點的橫坐標(biāo)。

  即:方程f(x)0有實數(shù)根函數(shù)yf(x)的圖象與x軸有交點函數(shù)yf(x)有零點.3、函數(shù)零點的求法:

  1(代數(shù)法)求方程f(x)0的實數(shù)根;○

  2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)yf(x)的圖○

  象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.4、二次函數(shù)的零點:2bxc(a0).二次函數(shù)yax2(1)△>0,方程axbxc0有兩不等實根,二次函數(shù)的圖象與x軸有兩個交點,二次函數(shù)有兩個零點.2(2)△=0,方程axbxc0有兩相等實根,二次函數(shù)的圖象與x軸有一個交點,二次函數(shù)有一個二重零點或二階零點.2(3)△<0,方程axbxc0無實根,二次函數(shù)的圖象與x軸無交點,二次函數(shù)無零點.

  高一數(shù)學(xué)知識總結(jié)數(shù)性質(zhì)三、平面向量

  向量:既有大小,又有方向的量.?dāng)?shù)量:只有大小,沒有方向的量.

  有向線段的三要素:起點、方向、長度.零向量:長度為0的向量.

  單位向量:長度等于1個單位的向量.相等向量:長度相等且方向相同的向量&向量的運算加法運算

  AB+BC=AC,這種計算法則叫做向量加法的三角形法則。

  已知兩個從同一點O出發(fā)的兩個向量OA、OB,以O(shè)A、OB為鄰邊作平行四邊形OACB,則以O(shè)為起點的對角線OC就是向量OA、OB的和,這種計算法則叫做向量加法的平行四邊形法則。對于零向量和任意向量a,有:0+a=a+0=a。|a+b|≤|a|+|b|。

  向量的加法滿足所有的加法運算定律。

  減法運算

  與a長度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

  數(shù)乘運算

  實數(shù)λ與向量a的積是一個向量,這種運算叫做向量的數(shù)乘,記作λa,|λa|=|λ||a|,當(dāng)λ>0時,λa的方向和a的方向相同,當(dāng)λ<0時,λa的方向和a的方向相反,當(dāng)λ=0時,λa=0。設(shè)λ、μ是實數(shù),那么:(1)(λμ)a=λ(μa)(2)(λμ)a=λaμa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a)。

  向量的加法運算、減法運算、數(shù)乘運算統(tǒng)稱線性運算。

  向量的數(shù)量積

  已知兩個非零向量a、b,那么|a||b|cosθ叫做a與b的數(shù)量積或內(nèi)積,記作a?b,θ是a與b的'夾角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的數(shù)量積為0。a?b的幾何意義:數(shù)量積a?b等于a的長度|a|與b在a的方向上的投影|b|cosθ的乘積。兩個向量的數(shù)量積等于它們對應(yīng)坐標(biāo)的乘積的和。四、三角函數(shù)

  1、善于用“1“巧解題

  2、三角問題的非三角化解題策略3、三角函數(shù)有界性求最值解題方法4、三角函數(shù)向量綜合題例析5、三角函數(shù)中的數(shù)學(xué)思想方法

  15、正弦函數(shù)、余弦函數(shù)和正切函數(shù)的圖象與性質(zhì):ysinxytanxycosx函圖象

  定義域值域最值周期性奇偶性單調(diào)性

  RR

  1,1

  當(dāng)x2kk當(dāng)x2kk時,

  ymax時,21;當(dāng)ymax1;當(dāng)x2kx2kk時,ymin1.ky1.2min時,

  2

  1,1

  xxk,k

  2R

  既無最大值也無最小值

  2

  奇函數(shù)

  奇函數(shù)

  在

  偶函數(shù)

  對稱性

  必修四

  角的頂點與原點重合,角的始邊與x軸的非負(fù)半軸重合,終邊落在第幾象限,則稱為第幾象限角.k36090,k第一象限角的集合為k360,k第二象限角的集合為k36090k360180第三象限角的集合為k360180k360270,k第四象限角的集合為k360270k360360,k終邊在x軸上的角的集合為k180,k終邊在y軸上的角的集合為k18090,k終邊在坐標(biāo)軸上的角的集合為k90,k3、與角終邊相同的角的集合為*k360,k4、已知是第幾象限角,確定n所在象限的方法:先把各象限均分n等份,再從x軸的正半

  2k,2k在2k,2kk上232k上是增函數(shù);在是增函數(shù);在2k,2k2k,2kk上是減函數(shù).22k上是減函數(shù).對稱中心k,0中心稱k對對稱軸xkkk,0k

  x2k對稱軸2k

  ,k

  22k上是增函數(shù).

  k,0k對稱中心無對稱軸2在kn軸的上方起,依次將各區(qū)域標(biāo)上一、二、三、四,則原來是第幾象限對應(yīng)的標(biāo)號即為區(qū)域.

  5、長度等于半徑長的弧所對的圓心角叫做1弧度.口訣:奇變偶不變,符號看象限.

  公式一:

  設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:

  設(shè)α為任意角,πα的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα

  公式三:

  任意角α與-α的三角函數(shù)值之間的關(guān)系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα

  公式四:

  利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα

  公式五:

  利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα

  公式六:

  π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanα

  sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα

  sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanα

  sin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα

  (以上k∈Z)

  其他三角函數(shù)知識:同角三角函數(shù)基本關(guān)系

 、蓖侨呛瘮(shù)的基本關(guān)系式倒數(shù)關(guān)系:

  tanαcotα=1sinαcscα=1cosαsecα=1商的關(guān)系:

  sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方關(guān)系:

  sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)兩角和差公式

  ⒉兩角和與差的三角函數(shù)公式

  sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ

  tanα+tanβtan(α+β)=1-tanαtanβ

  tanα-tanβtan(α-β)=1+tanαtanβ

  n終邊所落在的

  倍角公式

 、扯督堑恼、余弦和正切公式(升冪縮角公式)sin2α=2sinαcosα

  cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)2tanαtan2α=1-tan^2(α)半角公式

 、窗虢堑恼摇⒂嘞液驼泄剑ń祪鐢U(kuò)角公式)1-cosαsin^2(α/2)=21+cosαcos^2(α/2)=21-cosαtan^2(α/2)=1+cosα萬能公式⒌萬能公式

  2tan(α/2)sinα=1+tan^2(α/2)

  1-tan^2(α/2)cosα=1+tan^2(α/2)

  2tan(α/2)tanα=1-tan^2(α/2)和差化積公式

 、啡呛瘮(shù)的和差化積公式

  α+βα-βsinα+sinβ=2sin----cos---22

  α+βα-βsinα-sinβ=2cos----sin----22

  α+βα-βcosα+cosβ=2cos-----cos-----22

  α+βα-βcosα-cosβ=-2sin-----sin-----22積化和差公式

 、溉呛瘮(shù)的積化和差公式

  sinαcosβ=0.5[sin(α+β)+sin(α-β)]cosαsinβ=0.5[sin(α+β)-sin(α-β)]cosαcosβ=0.5[cos(α+β)+cos(α-β)]sinαsinβ=-0.5[cos(α+β)-cos(α-β)]

高一數(shù)學(xué)知識點總結(jié)7

  高一數(shù)學(xué)第三章函數(shù)的應(yīng)用知識點總結(jié)

  一、方程的根與函數(shù)的零點

  1、函數(shù)零點的概念:對于函數(shù)yf(x)(xD),把使f(x)0成立的實數(shù)x叫做函數(shù)yf(x)(xD)的零點。

  2、函數(shù)零點的意義:函數(shù)yf(x)的零點就是方程f(x)0實數(shù)根,亦即函數(shù)

  yf(x)的圖象與x軸交點的橫坐標(biāo)。

  即:方程f(x)0有實數(shù)根函數(shù)yf(x)的圖象與x軸有交點函數(shù)yf(x)有零點.

  3、函數(shù)零點的求法:

  1(代數(shù)法)求方程f(x)0的實數(shù)根;○

  2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)yf(x)的圖象○

  聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.

  零點存在性定理:如果函數(shù)y=f(x)在區(qū)間〔a,b〕上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,即存在c(a,b),使得f(c)=0,這個c也就是方程f(x)=0的根。先判定函數(shù)單調(diào)性,然后證明是否有f(a)f(b)第三章函數(shù)的應(yīng)用習(xí)題

  一、選擇題

  1.下列函數(shù)有2個零點的是()

  222y3x10y4x5x10yx3x5y4x4x1A、B、C、D、22.用二分法計算3x3x80在x(1,2)內(nèi)的根的過程中得:f(1)0,f(1.5)0,

  f(1.25)0,則方程的根落在區(qū)間()

  A、(1,1.5)B、(1.5,2)C、(1,1.25)D、(1.25,1.5)

  3.若方程axxa0有兩個解,則實數(shù)a的`取值范圍是A、(1,)B、(0,1)C、(0,)D、

  4.函數(shù)f(x)=lnx-2x的零點所在的大致區(qū)間是()A.(1,2)B.2,eC.e,3D.e,

  5.已知方程x3x10僅有一個正零點,則此零點所在的區(qū)間是()

  A.(3,4)B.(2,3)C.(1,2)D.(0,1)

  6.函數(shù)f(x)lnx2x6的零點落在區(qū)間()A.(2,2.25)B.(2.25,2.5)C.(2.5,2.75)D.(2.75,3)

  7.已知函數(shù)

  fx的圖象是不間斷的,并有如下的對應(yīng)值表:x1234567fx8735548那么函數(shù)在區(qū)間(1,6)上的零點至少有()個A.5B.4C.3D.28.方程2x1x5的解所在的區(qū)間是A(0,1)B(1,2)C(2,3)D(3,4)

  9.方程4x35x60的根所在的區(qū)間為A、(3,2)B、(2,1)C、(1,0)D、(0,1)

  10.已知f(x)2x22x,則在下列區(qū)間中,f(x)0有實數(shù)解的是()

 。

 。ǎ

  ()

 。(A)(-3,-2)(B)(-1,0)(C)(2,3)(D)(4,5)11.根據(jù)表格中的數(shù)據(jù),可以判定方程ex-x-2=0的一個根所在的區(qū)間為()

  xexx+2-10.37101212.72327.394320.095A.(-1,0)B.(0,1)C.(1,2)D.(2,3)12、方程

  x12x根的個數(shù)為()

  A、0B、1C、2D、3二、填空題

  13.下列函數(shù):1)y=lgx;2)y2;3)y=x2;4)y=|x|-1;其中有2個零點的函數(shù)的序號是。

  x214.若方程3x2的實根在區(qū)間m,n內(nèi),且m,nZ,nm1,

  x則mn.

  222f(x)(x1)(x2)(x2x3)的零點是15、函數(shù)(必須寫全所有的零點)。

  擴(kuò)展閱讀:高中數(shù)學(xué)必修一第三章函數(shù)的應(yīng)用知識點總結(jié)

  第三章函數(shù)的應(yīng)用

  一、方程的根與函數(shù)的零點

  1、函數(shù)零點的概念:對于函數(shù)yf(x)(xD),把使f(x)0成立的實數(shù)x叫做函數(shù)yf(x)(xD)的零點。

  2、函數(shù)零點的意義:函數(shù)yf(x)的零點就是方程f(x)0實數(shù)根,亦即函數(shù)

  yf(x)的圖象與x軸交點的橫坐標(biāo)。

  即:方程f(x)0有實數(shù)根函數(shù)yf(x)的圖象與x軸有交點函數(shù)yf(x)有零點.

  3、函數(shù)零點的求法:

  1(代數(shù)法)求方程f(x)0的實數(shù)根;○

  2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)yf(x)的圖象聯(lián)系起來,○

  并利用函數(shù)的性質(zhì)找出零點.

  4、基本初等函數(shù)的零點:

 、僬壤瘮(shù)ykx(k0)僅有一個零點。

  k(k0)沒有零點。x③一次函數(shù)ykxb(k0)僅有一個零點。

  ②反比例函數(shù)y④二次函數(shù)yax2bxc(a0).

 。1)△>0,方程ax2bxc0(a0)有兩不等實根,二次函數(shù)的圖象與x軸有兩個交點,二次函數(shù)有兩個零點.

 。2)△=0,方程ax2bxc0(a0)有兩相等實根,二次函數(shù)的圖象與x軸有一個交點,二次函數(shù)有一個二重零點或二階零點.

  (3)△<0,方程ax2bxc0(a0)無實根,二次函數(shù)的圖象與x軸無交點,二次函數(shù)無零點.

 、葜笖(shù)函數(shù)ya(a0,且a1)沒有零點。⑥對數(shù)函數(shù)ylogax(a0,且a1)僅有一個零點1.

  ⑦冪函數(shù)yx,當(dāng)n0時,僅有一個零點0,當(dāng)n0時,沒有零點。

  5、非基本初等函數(shù)(不可直接求出零點的較復(fù)雜的函數(shù)),函數(shù)先把fx轉(zhuǎn)化成,這另fx0,再把復(fù)雜的函數(shù)拆分成兩個我們常見的函數(shù)y1,y2(基本初等函數(shù))個函數(shù)圖像的交點個數(shù)就是函數(shù)fx零點的個數(shù)。

  6、選擇題判斷區(qū)間a,b上是否含有零點,只需滿足fafb0。Eg:試判斷方程xx2x10在區(qū)間[0,2]內(nèi)是否有實數(shù)解?并說明理由。

  1

  42x7、確定零點在某區(qū)間a,b個數(shù)是唯一的條件是:①fx在區(qū)間上連續(xù),且fafb0②在區(qū)間a,b上單調(diào)。Eg:求函數(shù)f(x)2xlg(x1)2的零點個數(shù)。

  8、函數(shù)零點的性質(zhì):

  從“數(shù)”的角度看:即是使f(x)0的實數(shù);

  從“形”的角度看:即是函數(shù)f(x)的圖象與x軸交點的橫坐標(biāo);

  若函數(shù)f(x)的圖象在xx0處與x軸相切,則零點x0通常稱為不變號零點;若函數(shù)f(x)的圖象在xx0處與x軸相交,則零點x0通常稱為變號零點.

  Eg:一元二次方程根的分布討論

  一元二次方程根的分布的基本類型

  2axbxc0(a0)的兩實根為x1,x2,且x1x2.設(shè)一元二次方程

  k為常數(shù),則一元二次方程根的k分布(即x1,x2相對于k的位置)或根在區(qū)間上的

  分布主要有以下基本類型:

  表一:(兩根與0的大小比較)

  分布情況兩個負(fù)根即兩根都小于0兩個正根即兩根都大于0一正根一負(fù)根即一個根小于0,一個大于0x10,x20x10,x20x10x2a0)大致圖象(得出的結(jié)論0b02af000b02af00f00

  大致圖象(a0)得出的結(jié)論0b02af000b02aaf000b02af000b02aaf00f00(不綜討合論結(jié)a論)

  af00表二:(兩根與k的大小比較)

  分布情況兩根都小于k即兩根都大于k即一個根小于k,一個大于k即x1k,x2kx1k,x2kx1kx2a0)大致圖象(kkk得出的結(jié)論0bk2afk00bk2afk0fk0大致圖象(a0)得出的結(jié)論0bk2afk00bk2aafk00bk2afk00bk2aafk0fk0(不綜討合論結(jié)a論)a0)afk0分布情況大致圖象(得出的結(jié)論表三:(根在區(qū)間上的分布)

  兩根都在m,n內(nèi)兩根有且僅有一根在m,n一根在m,n內(nèi),另一根在p,q內(nèi)(有兩種情況,只畫了一種)內(nèi),mnpq0fm0fn0bmn2afmfn0fm0fn0fmfn0fp0fq0fpfq0或

  大致圖象(a0)得出的結(jié)論0fm0fn0bmn2a綜合結(jié)論fmfn0fm0fn0fmfn0fp0fq0fpfq0或fmfn0fpfq0(a不)討論

  fmfn0Eg:(1)關(guān)于x的方程x22(m3)x2m140有兩個實根,且一個大于1,一個小于1,求m的取值范圍?

  (2)關(guān)于x的方程x2(m3)x2m140有兩實根在[0,4]內(nèi),求m的取值范圍?

  2(3)關(guān)于x的方程mx2(m3)x2m140有兩個實根,且一個大于4,一個小于4,求m的取值范圍?

  9、二分法的定義

  對于在區(qū)間[a,b]上連續(xù)不斷,且滿足f(a)f(b)0的函數(shù)

  yf(x),通過不斷地把函數(shù)f(x)的零點所在的區(qū)間一分為二,

  使區(qū)間的兩個端點逐步逼近零點,進(jìn)而得到零點近似值的方法叫做二分法.

  10、給定精確度ε,用二分法求函數(shù)f(x)零點近似值的步驟:(1)確定區(qū)間[a,b],驗證f(a)f(b)0,給定精度;(2)求區(qū)間(a,b)的中點x1;(3)計算f(x1):

  ①若f(x1)=0,則x1就是函數(shù)的零點;

 、谌鬴(a)f(x1)14、根據(jù)散點圖設(shè)想比較接近的可能的函數(shù)模型:一次函數(shù)模型:f(x)kxb(k0);二次函數(shù)模型:g(x)ax2bxc(a0);冪函數(shù)模型:h(x)axb(a0);

  指數(shù)函數(shù)模型:l(x)abxc(a0,b>0,b1)

  利用待定系數(shù)法求出各解析式,并對各模型進(jìn)行分析評價,選出合適的函數(shù)模型

高一數(shù)學(xué)知識點總結(jié)8

  1.知識網(wǎng)絡(luò)圖

  復(fù)數(shù)知識點網(wǎng)絡(luò)圖

  2.復(fù)數(shù)中的難點

  (1)復(fù)數(shù)的向量表示法的運算.對于復(fù)數(shù)的向量表示有些學(xué)生掌握得不好,對向量的運算的幾何意義的靈活掌握有一定的困難.對此應(yīng)認(rèn)真體會復(fù)數(shù)向量運算的幾何意義,對其靈活地加以證明.

  (2)復(fù)數(shù)三角形式的乘方和開方.有部分學(xué)生對運算法則知道,但對其靈活地運用有一定的困難,特別是開方運算,應(yīng)對此認(rèn)真地加以訓(xùn)練.

  (3)復(fù)數(shù)的輻角主值的求法.

  (4)利用復(fù)數(shù)的幾何意義靈活地解決問題.復(fù)數(shù)可以用向量表示,同時復(fù)數(shù)的模和輻角都具有幾何意義,對他們的理解和應(yīng)用有一定難度,應(yīng)認(rèn)真加以體會.

  3.復(fù)數(shù)中的重點

  (1)理解好復(fù)數(shù)的概念,弄清實數(shù)、虛數(shù)、純虛數(shù)的.不同點.

  (2)熟練掌握復(fù)數(shù)三種表示法,以及它們間的互化,并能準(zhǔn)確地求出復(fù)數(shù)的模和輻角.復(fù)數(shù)有代數(shù),向量和三角三種表示法.特別是代數(shù)形式和三角形式的互化,以及求復(fù)數(shù)的模和輻角在解決具體問題時經(jīng)常用到,是一個重點內(nèi)容.

  (3)復(fù)數(shù)的三種表示法的各種運算,在運算中重視共軛復(fù)數(shù)以及模的有關(guān)性質(zhì).復(fù)數(shù)的運算是復(fù)數(shù)中的主要內(nèi)容,掌握復(fù)數(shù)各種形式的運算,特別是復(fù)數(shù)運算的幾何意義更是重點內(nèi)容.

  (4)復(fù)數(shù)集中一元二次方程和二項方程的解法.

高一數(shù)學(xué)知識點總結(jié)9

  一、指數(shù)函數(shù)

  (一)指數(shù)與指數(shù)冪的運算

  1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

  當(dāng)是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負(fù)數(shù)的次方根是一個負(fù)數(shù).此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).

  當(dāng)是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù).此時,正數(shù)的正的次方根用符號表示,負(fù)的次方根用符號-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。

  注意:當(dāng)是奇數(shù)時,當(dāng)是偶數(shù)時,

  2.分?jǐn)?shù)指數(shù)冪

  正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:

  0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義

  指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.

  3.實數(shù)指數(shù)冪的運算性質(zhì)

  (二)指數(shù)函數(shù)及其性質(zhì)

  1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域為R.

  注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.

  2、指數(shù)函數(shù)的圖象和性質(zhì)

  【第三章:第三章函數(shù)的應(yīng)用】

  1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。

  2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標(biāo)。即:

  方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.

  3、函數(shù)零點的'求法:

  求函數(shù)的零點:

  (1)(代數(shù)法)求方程的實數(shù)根;

  (2)(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.

  4、二次函數(shù)的零點:

  二次函數(shù).

  1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.  2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.

  3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.

  3.2.1幾類不同增長的函數(shù)模型

  【課 型】新授課

  【教學(xué)目標(biāo)】

  結(jié)合實例體會直線上升、指數(shù)爆炸、對數(shù)增長等不同增長的函數(shù)模型意義, 理解它們的增長差異性.

  【教學(xué)重點、難點】

  1. 教學(xué)重點 將實際問題轉(zhuǎn)化為函數(shù)模型,比較常數(shù)函數(shù)、一次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)模型的增長差異,結(jié)合實例體會直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)類型增長的含義.

  2.教學(xué)難點 選擇合適的數(shù)學(xué)模型分析解決實際問題.

  【學(xué)法與教學(xué)用具】

  1. 學(xué)法:學(xué)生通過閱讀教材,動手畫圖,自主學(xué)習(xí)、思考,并相互討論,進(jìn)行探索.

  2.教學(xué)用具:多媒體.

  【教學(xué)過程】

  (一)引入實例,創(chuàng)設(shè)情景.

  教師引導(dǎo)學(xué)生閱讀例1,分析其中的數(shù)量關(guān)系,思考應(yīng)當(dāng)選擇怎樣的函數(shù)模型來描述;由學(xué)生自己根據(jù)數(shù)量關(guān)系,歸納概括出相應(yīng)的函數(shù)模型,寫出每個方案的函數(shù)解析式,教師在數(shù)量關(guān)系的分析、函數(shù)模型的選擇上作指導(dǎo).

  (二)互動交流,探求新知.

  1. 觀察數(shù)據(jù),體會模型.

  教師引導(dǎo)學(xué)生觀察例1表格中三種方案的數(shù)量變化情況,體會三種函數(shù)的增長差異,說出自己的發(fā)現(xiàn),并進(jìn)行交流.

  2. 作出圖象,描述特點.

  教師引導(dǎo)學(xué)生借助計算器作出三個方案的函數(shù)圖象,分析三種方案的不同變化趨勢,并進(jìn)行描述,為方案選擇提供依據(jù).

  (三)實例運用,鞏固提高.

  1. 教師引導(dǎo)學(xué)生分析影響方案選擇的因素,使學(xué)生認(rèn)識到要做出正確選擇除了考慮每天的收益,還要考慮一段時間內(nèi)的總收益.學(xué)生通過自主活動,分析整理數(shù)據(jù),并根據(jù)其中的信息做出推理判斷,獲得累計收益并給出本例的完整解答,然后全班進(jìn)行交流.

  2. 教師引導(dǎo)學(xué)生分析例2中三種函數(shù)的不同增長情況對于獎勵模型的影響,使學(xué)生明確問題的實質(zhì)就是比較三個函數(shù)的增長情況,進(jìn)一步體會三種基本函數(shù)模型在實際中廣泛應(yīng)用,體會它們的增長差異.

  3.教師引導(dǎo)學(xué)生分析得出:要對每一個獎勵模型的獎金總額是否超出5萬元,以及獎勵比例是否超過25%進(jìn)行分析,才能做出正確選擇,學(xué)會對數(shù)據(jù)的特點與作用進(jìn)行分析、判斷。

  4.教師引導(dǎo)學(xué)生利用解析式,結(jié)合圖象,對例2的三個模型的增長情況進(jìn)行分析比較,寫出完整的解答過程.進(jìn)一步認(rèn)識三個函數(shù)模型的增長差異,并掌握解答的規(guī)范要求.

  5.教師引導(dǎo)學(xué)生通過以上具體函數(shù)進(jìn)行比較分析,探究冪函數(shù)(>0)、指數(shù)函數(shù)(>1)、對數(shù)函數(shù)(>1)在區(qū)間(0,+∞)上的增長差異,并從函數(shù)的性質(zhì)上進(jìn)行研究、論證,同學(xué)之間進(jìn)行交流總結(jié),形成結(jié)論性報告.教師對學(xué)生的結(jié)論進(jìn)行評析,借助信息技術(shù)手段進(jìn)行驗證演示.

  6. 課堂練習(xí)

  教材P98練習(xí)1、2,并由學(xué)生演示,進(jìn)行講評。

  (四)歸納總結(jié),提升認(rèn)識.

  教師通過計算機作圖進(jìn)行總結(jié),使學(xué)生認(rèn)識直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)模型的含義及其差異,認(rèn)識數(shù)學(xué)與現(xiàn)實生活、與其他學(xué)科的密切聯(lián)系,從而體會數(shù)學(xué)的實用價值和內(nèi)在變化規(guī)律.

  (五)布置作業(yè)

  教材P107練習(xí)第2題

  收集一些社會生活中普遍使用的遞增的一次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的實例,對它們的增長速度進(jìn)行比較,了解函數(shù)模型的廣泛應(yīng)用,并思考。有時同一個實際問題可以建立多個函數(shù)模型,在具體應(yīng)用函數(shù)模型時,應(yīng)該怎樣選用合理的函數(shù)模型.

  3.2.2 函數(shù)模型的應(yīng)用實例(Ⅰ)

  【課 型】新授課

  【教學(xué)目標(biāo)】

  能夠找出簡單實際問題中的函數(shù)關(guān)系式,初步體會應(yīng)用一次函數(shù)、二次函數(shù)模型解決實際問題.

  【教學(xué)重點與難點】

  1.教學(xué)重點:運用一次函數(shù)、二次函數(shù)模型解決一些實際問題.

  2. 教學(xué)難點:將實際問題轉(zhuǎn)變?yōu)閿?shù)學(xué)模型.

  【學(xué)法與教學(xué)用具】

  1. 學(xué)法:學(xué)生自主閱讀教材,采用嘗試、討論方式進(jìn)行探究.

  2. 教學(xué)用具:多媒體

  【教學(xué)過程】

  (一)創(chuàng)設(shè)情景,揭示課題

  引例:大約在一千五百年前,大數(shù)學(xué)家孫子在《孫子算經(jīng)》中記載了這樣的一道題:“今有雛兔同籠,上有三十五頭,下有九十四足,問雛兔各幾何?”這四句的意思就是:有若干只有幾只雞和兔?你知道孫子是如何解答這個“雞兔同籠”問題的嗎?你有什么更好的方法?老師介紹孫子的大膽解法:他假設(shè)砍去每只雞和兔一半的腳,則每只雞和兔就變成了“獨腳雞”和“雙腳兔”.這樣,“獨腳雞”和“雙腳兔”腳的數(shù)量與它們頭的數(shù)量之差,就是兔子數(shù),即:47-35=12;雞數(shù)就是:35-12=23.

  比例激發(fā)學(xué)生學(xué)習(xí)興趣,增強其求知欲望.

  可引導(dǎo)學(xué)生運用方程的思想解答“雞兔同籠”問題.

  (二)結(jié)合實例,探求新知

  例1. 某列火車眾北京西站開往石家莊,全程277km,火車出發(fā)10min開出13km后,以120km/h勻速行駛.試寫出火車行駛的總路程S與勻速行駛的時間t之間的關(guān)系式,并求火車離開北京2h內(nèi)行駛的路程.

  探索:

  1)本例所涉及的變量有哪些?它們的取值范圍怎樣;

  2)所涉及的變量的關(guān)系如何?

  3)寫出本例的解答過程.

  老師提示:路程S和自變量t的取值范圍(即函數(shù)的定義域),注意t的實際意義.

  學(xué)生獨立思考,完成解答,并相互討論、交流、評析.

  例2.某商店出售茶壺和茶杯,茶壺每只定價20元,茶杯每只定價5元,該商店制定了兩種優(yōu)惠辦法:

  1)本例所涉及的變量之間的關(guān)系可用何種函數(shù)模型來描述?

  2)本例涉及到幾個函數(shù)模型?

  3)如何理解“更省錢?”;

  4)寫出具體的解答過程.

  在學(xué)生自主思考,相互討論完成本例題解答之后,老師小結(jié):通過以上兩例,數(shù)學(xué)模型是用數(shù)學(xué)語言模擬現(xiàn)實的一種模型,它把實際問題中某些事物的主要特征和關(guān)系抽象出來,并用數(shù)學(xué)語言來表達(dá),這一過程稱為建模,是解應(yīng)用題的關(guān)鍵。數(shù)學(xué)模型可采用各種形式,如方程(組),函數(shù)解析式,圖形與網(wǎng)絡(luò)等.

高一數(shù)學(xué)知識點總結(jié)10

  一、直線與方程

 。1)直線的傾斜角

  定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°(2)直線的斜率

 、俣x:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即ktan。斜率反映直線與軸的傾斜程度。

  當(dāng)0,90時,k0;當(dāng)90,180時,k0;當(dāng)90時,k不存在。

  yy1(x1x2)②過兩點的直線的斜率公式:k2x2x1注意下面四點:(1)當(dāng)x1x2時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;(2)k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標(biāo)直接求得;

  (4)求直線的傾斜角可由直線上兩點的坐標(biāo)先求斜率得到。(3)直線方程

  ①點斜式:yy1k(xx1)直線斜率k,且過點x1,y1

  注意:當(dāng)直線的斜率為0°時,k=0,直線的方程是y=y1。

  當(dāng)直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標(biāo)都等于x1,所以它的方程是x=x1。

 、谛苯厥剑簓kxb,直線斜率為k,直線在y軸上的截距為b③兩點式:④截矩式:

  yy1y2y1xayxx1x2x1(x1x2,y1y2)直線兩點x1,y1,x2,y2

  1b其中直線l與x軸交于點(a,0),與y軸交于點(0,b),即l與x軸、y軸的截距分別為a,b。

 、菀话闶剑篈xByC0(A,B不全為0)

  1各式的適用范圍○2特殊的方程如:注意:○

  平行于x軸的直線:yb(b為常數(shù));平行于y軸的直線:xa(a為常數(shù));(5)直線系方程:即具有某一共同性質(zhì)的直線(一)平行直線系

  平行于已知直線A0xB0yC00(A0,B0是不全為0的常數(shù))的直線系:

  A0xB0yC0(C為常數(shù))

 。ǘ┻^定點的直線系

 。ǎ┬甭蕿閗的直線系:yy0kxx0,直線過定點x0,y0;

 。ǎ┻^兩條直線l1:A1xB1yC10,l2:A2xB2yC20的交點的直線系方程為

  ,其中直線l2不在直線系中。A1xB1yC1A2xB2yC20(為參數(shù))(6)兩直線平行與垂直

  當(dāng)l1:yk1xb1,l2:yk2xb2時,l1//l2k1k2,b1b2;l1l2k1k21

  注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。(7)兩條直線的交點

  l1:A1xB1yC10l2:A2xB2yC20相交交點坐標(biāo)即方程組A1xB1yC10的一組解。

  A2xB2yC20方程組無解l1//l2;方程組有無數(shù)解l1與l2重合(8)兩點間距離公式:設(shè)A(x1,y1),B是平面直角坐標(biāo)系中的兩個點,(x2,y2)則|AB|(x2x1)2(y2y1)2

 。9)點到直線距離公式:一點Px0,y0到直線l1:AxByC0的距離d(10)兩平行直線距離公式

  在任一直線上任取一點,再轉(zhuǎn)化為點到直線的距離進(jìn)行求解。

  Ax0By0CAB22

  二、圓的方程

  1、圓的定義:平面內(nèi)到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的

  半徑。

  2、圓的方程

 。1)標(biāo)準(zhǔn)方程xaybr2,圓心a,b,半徑為r;

  22(2)一般方程x2y2DxEyF0當(dāng)DE2224F0時,方程表示圓,此時圓心為22D2,1E,半徑為r22D2E24F

  當(dāng)DE4F0時,表示一個點;當(dāng)DE4F0時,方程不表示任何圖

  形。

 。3)求圓方程的方法:一般都采用待定系數(shù)法:先設(shè)后求。確定一個圓需要三個獨立條件,若利用圓的標(biāo)準(zhǔn)方程,需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);

  另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置。3、直線與圓的位置關(guān)系:

  直線與圓的位置關(guān)系有相離,相切,相交三種情況,基本上由下列兩種方法判斷:

 。1)設(shè)直線l:AxByC0,圓C:xa2yb2r2,圓心Ca,b到l的距離為

  dAaBbCAB222,則有drl與C相離;drl與C相切;drl與C相交

  22(2)設(shè)直線l:AxByC0,圓C:xaybr2,先將方程聯(lián)立消元,得到一個一元二次方程之后,令其中的判別式為,則有

  0l與C相離;0l與C相切;0l與C相交

  2注:如果圓心的位置在原點,可使用公式xx0yy0r去解直線與圓相切的問題,其中x0,y0表示切點坐標(biāo),r表示半徑。

  (3)過圓上一點的切線方程:

  22

  ①圓x2+y2=r,圓上一點為(x0,y0),則過此點的切線方程為xx0yy0r(課本命題).

  2222

 、趫A(x-a)+(y-b)=r,圓上一點為(x0,y0),則過此點的`切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r(課本命題的推廣).

  4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。設(shè)圓C1:xa12yb12r2,C2:xa22yb22R2兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。當(dāng)dRr時兩圓外離,此時有公切線四條;

  當(dāng)dRr時兩圓外切,連心線過切點,有外公切線兩條,內(nèi)公切線一條;當(dāng)RrdRr時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;當(dāng)dRr時,兩圓內(nèi)切,連心線經(jīng)過切點,只有一條公切線;當(dāng)dRr時,兩圓內(nèi)含;當(dāng)d0時,為同心圓。

  三、立體幾何初步

  1、柱、錐、臺、球的結(jié)構(gòu)特征

 。1)棱柱:定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共

  邊都互相平行,由這些面所圍成的幾何體。

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

  表示:用各頂點字母,如五棱柱ABCDEA"B"C"D"E"或用對角線的端點字母,如五棱柱

  "AD

  幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且

  相等;平行于底面的截面是與底面全等的多邊形。

 。2)棱錐

  定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

  表示:用各頂點字母,如五棱錐PABCDE

  幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到

  截面距離與高的比的平方。

 。3)棱臺:定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺、五棱臺等

  """""表示:用各頂點字母,如五棱臺PABCDE

  幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體

  幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖

  是一個矩形。

 。5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何

  體

  幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側(cè)面展開圖是一個扇形。(6)圓臺:定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點;③側(cè)面展開圖是一個弓形。(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。2、空間幾何體的三視圖

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

  注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;

  側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

  3、空間幾何體的直觀圖斜二測畫法

  斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;

 、谠瓉砼cy軸平行的線段仍然與y平行,長度為原來的一半。

  4、柱體、錐體、臺體的表面積與體積

 。1)幾何體的表面積為幾何體各個面的面積的和。

 。2)特殊幾何體表面積公式(c為底面周長,h為高,h為斜高,l為母線)

  S直棱柱側(cè)面積S正棱臺側(cè)面積12chS圓柱側(cè)2rhS正棱錐側(cè)面積(c1c2)h"S圓臺側(cè)面積(rR)l

  12ch"S圓錐側(cè)面積rl

  S圓柱表2rrlS圓錐表rrlS圓臺表r2rlRlR2

 。3)柱體、錐體、臺體的體積公式V柱ShV圓柱ShV臺13(S""21rhV錐ShV圓錐1r2h

  33SSS)hV圓臺13(S"SSS)h"13(rrRR)h

  22

 。4)球體的表面積和體積公式:V球4、空間點、直線、平面的位置關(guān)系

  球面=4R2

 。1)平面

  ①平面的概念:A.描述性說明;B.平面是無限伸展的;

 、谄矫娴谋硎荆和ǔS孟ED字母α、β、γ表示,如平面α(通常寫在一個銳角內(nèi));

  也可以用兩個相對頂點的字母來表示,如平面BC。

  ③點與平面的關(guān)系:點A在平面內(nèi),記作A;點A不在平面內(nèi),記作A點與直線的關(guān)系:點A的直線l上,記作:A∈l;點A在直線l外,記作Al;

  直線與平面的關(guān)系:直線l在平面α內(nèi),記作lα;直線l不在平面α內(nèi),記作lα。(2)公理1:如果一條直線的兩點在一個平面內(nèi),那么這條直線是所有的點都在這個平面內(nèi)。

 。粗本在平面內(nèi),或者平面經(jīng)過直線)

  應(yīng)用:檢驗桌面是否平;判斷直線是否在平面內(nèi)

  用符號語言表示公理1:Al,Bl,A,Bl(3)公理2:經(jīng)過不在同一條直線上的三點,有且只有一個平面。

  推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。

  公理2及其推論作用:①它是空間內(nèi)確定平面的依據(jù)②它是證明平面重合的依據(jù)(4)公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線

  符號:平面α和β相交,交線是a,記作α∩β=a。

  符號語言:PABABl,Pl公理3的作用:

 、偎桥卸▋蓚平面相交的方法。

 、谒f明兩個平面的交線與兩個平面公共點之間的關(guān)系:交線必過公共點。③它可以判斷點在直線上,即證若干個點共線的重要依據(jù)。(5)公理4:平行于同一條直線的兩條直線互相平行(6)空間直線與直線之間的位置關(guān)系

 、佼惷嬷本定義:不同在任何一個平面內(nèi)的兩條直線②異面直線性質(zhì):既不平行,又不相交。

 、郛惷嬷本判定:過平面外一點與平面內(nèi)一點的直線與平面內(nèi)不過該店的直線是異面直線④異面直線所成角:直線a、b是異面直線,經(jīng)過空間任意一點O,分別引直線a’∥a,b’∥b,則把直線a’和b’所成的銳角(或直角)叫做異面直線a和b所成的角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。說明:(1)判定空間直線是異面直線方法:①根據(jù)異面直線的定義;②異面直線的判定定理(2)在異面直線所成角定義中,空間一點O是任取的,而和點O的位置無關(guān)。②求異面直線所成角步驟:

  A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上。B、證明作出的角即為所求角C、利用三角形來求角

 。7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補。(8)空間直線與平面之間的位置關(guān)系

  直線在平面內(nèi)有無數(shù)個公共點.

  三種位置關(guān)系的符號表示:aαa∩α=Aa∥α

  (9)平面與平面之間的位置關(guān)系:平行沒有公共點;α∥β

  相交有一條公共直線。α∩β=b

  5、空間中的平行問題

 。1)直線與平面平行的判定及其性質(zhì)

  線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。

  線線平行線面平行

  線面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,

  那么這條直線和交線平行。線面平行線線平行

 。1)平面與平面平行的判定及其性質(zhì)兩個平面平行的判定定理

  (2)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行

  (線面平行→面面平行),

 。2)如果在兩個平面內(nèi),各有兩組相交直線對應(yīng)平行,那么這兩個平面平行。(線線平行→面面平行),

 。3)垂直于同一條直線的兩個平面平行,兩個平面平行的性質(zhì)定理

 。1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行。(面面平行→線面平行)(2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行。(面面平行→線線平行)7、空間中的垂直問題

 。1)線線、面面、線面垂直的定義①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。②線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直。

 、燮矫婧推矫娲怪保喝绻麅蓚平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。(2)垂直關(guān)系的判定和性質(zhì)定理①線面垂直判定定理和性質(zhì)定理判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面。性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。②面面垂直的判定定理和性質(zhì)定理

  判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直。性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面。

  9、空間角問題

 。1)直線與直線所成的角

 、賰善叫兄本所成的角:規(guī)定為0。

 、趦蓷l相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。③兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線a,b,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。

 。2)直線和平面所成的角

 、倨矫娴钠叫芯與平面所成的角:規(guī)定為0。②平面的垂線與平面所成的角:規(guī)定為90。③平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個平面所成的角。

  求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”。

  第6頁

  在“作角”時依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點到面的垂線,在解題時,注意挖掘題設(shè)中兩個主要信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線。(3)二面角和二面角的平面角①二面角的定義:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內(nèi)分別作垂直于棱的兩條射.....線,這兩條射線所成的角叫二面角的平面角。③直二面角:平面角是直角的二面角叫直二面角。

  兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角④求二面角的方法

  定義法:在棱上選擇有關(guān)點,過這個點分別在兩個面內(nèi)作垂直于棱的射線得到平面角垂面法:已知二面角內(nèi)一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角7、空間直角坐標(biāo)系

  (1)定義:如圖,OBCDD,A,B,C,是單位正方體.以A為原點,分別以O(shè)D,OA,,OB的方向為正方向,建立三條數(shù)軸x軸.y軸.z軸。這時建立了一個空間直角坐標(biāo)系Oxyz.

  1)O叫做坐標(biāo)原點2)x軸,y軸,z軸叫做坐標(biāo)軸.3)過每兩個坐標(biāo)軸的平面叫做坐標(biāo)面。

 。2)右手表示法:令右手大拇指、食指和中指相互垂直時,可能形成的位置。大拇指指向為x軸正方向,食指指向為y軸正向,中指指向則為z軸正向,這樣也可以決定三軸間的相位置。

 。3)任意點坐標(biāo)表示:空間一點M的坐標(biāo)可以用有序?qū)崝?shù)組(x,y,z)來表示,有序?qū)崝?shù)組(x,y,z)叫做點M在此空間直角坐標(biāo)系中的坐標(biāo),記作M(x,y,z)(x叫做點M的橫坐標(biāo),y叫做點M的縱坐標(biāo),z叫做點M的豎坐標(biāo))

 。4)空間兩點距離坐標(biāo)公式:d(x2x1)2(y2y1)2(z2z1)2

高一數(shù)學(xué)知識點總結(jié)11

  第一章.集合與函數(shù)的概念

  一、集合的概念與運算:

  1、集合的特性與表示法:集合中的元素應(yīng)具有:確定性互異性無序性;集合的表示法有:

  列舉法描述法文氏圖等。

  2、集合的分類:①有限集、無限集、空集。

  ②數(shù)集:yyx2點集:

  2x,yxy1

  B

  n3、子集與真子集:若xA則xBAB若AB但ABA

  若Aa1,a2,a3,an,則它的子集個數(shù)為2個4、集合的運算:①ABxxA且xB,若ABA則AB②ABxxA或xB,若ABA則BA③CUAxxU但xA

  5、映射:對于集合A中的任一元素a,按照某個對應(yīng)法則f,集合B中都有唯一的元素b與

  之對應(yīng),則稱f:AB為A到的映射,其中a叫做b的原象,b叫a的象。二、函數(shù)的概念及函數(shù)的性質(zhì):

  1、函數(shù)的概念:對于非空的數(shù)集A與B,我們稱映射f:AB為函數(shù),記作yfx,

  其中xA,yB,集合A即是函數(shù)的定義域,值域是B的子集。定義域、值域、對應(yīng)法則稱為函數(shù)的.三要素。2、函數(shù)的性質(zhì):

 、哦x域:1簡單函數(shù)的定義域:使函數(shù)有意義的x的取值范圍,例:y0lg(3x)的

  2x52x505定義域為:x3

  3x022復(fù)合函數(shù)的定義域:若yfx的定義域為xa,b,則復(fù)合函數(shù)

  0yfgx的定義域為不等式agxb的解集。3實際問題的定義域要根據(jù)實際問題的實際意義來確定定義域。

  0⑵值域:1利用函數(shù)的單調(diào)性:yx0p(po)y2x2ax3x2,3x2利用換元法:y2x13xy3x1x22

  珠暉區(qū)青少年活動中心中學(xué)部(博學(xué)教育培訓(xùn)中心)

  3數(shù)形結(jié)合法yx2x5

 、菃握{(diào)性:1明確基本初等函數(shù)的單調(diào)性:yaxbyax2bxcy

  00k

 。╧0)x

  yaxa0且a1ylogaxa0且a1yxnnR2定義:對x1D,x2D且x1x2

  若滿足fx1fx2,則fx在D上單調(diào)遞增若滿足fx1fx2,則fx在D上單調(diào)遞減。

  ⑷奇偶性:1定義:fx的定義域關(guān)于原點對稱,若滿足fx=-fx——奇函數(shù)

  00若滿足fx=fx——偶函數(shù)。2特點:奇函數(shù)的圖像關(guān)于原點對稱,偶函數(shù)的圖像關(guān)于y軸對稱。若fx為奇函數(shù)且定義域包括0,則f00若fx為偶函數(shù),則有fxf(5)對稱性:1yaxbxc的圖像關(guān)于直線x000x

  b對稱;2a22若fx滿足faxfaxfxf2ax,則fx的圖像

  關(guān)于直線xa對稱。

  03函數(shù)yfxa的圖像關(guān)于直線xa對稱。

  第二章、基本初等函數(shù)

  一、指數(shù)及指數(shù)函數(shù):

  1、指數(shù):amanamnam/an=amnamamn

  n

  naaa01a0

  mmn2、指數(shù)函數(shù):①定義:ya(a0,a1)

 、趫D象和性質(zhì):a>1時,xR,y(0,),在R上遞增,過定點(0,1)0<a<1時,xR,y(0,),在R上遞減,過定點(0,1)例如:y3x2x3的圖像過定點(2,4)珠暉區(qū)青少年活動中心中學(xué)部(博學(xué)教育培訓(xùn)中心)

  二、對數(shù)及對數(shù)函數(shù):

  1、對數(shù)及運算:abNlogaNblog1alogamnlogamloganloga0,alaogaloagNN

  nlanogloggamnloammloamgnlogablogcalogab>0(0<a,b<1或a,b>1logcblogab<0(0<a<1,b>1,或a>1,0<b<12、對數(shù)函數(shù):

  ①定義:ylogaxa0且a1與yax(a0,a1)互為反函數(shù)。

 、趫D像和性質(zhì):1a>1時,x0,,yR,在0,遞增,過定點(1,0)

  020<a<1時,x0,,yR,在0,遞減,過定點(1,0)。

  0三、冪函數(shù):①定義:yx0nnR

 、趫D像和性質(zhì):1n>0時,過定點(0,0)和(1,1),在x0,上單調(diào)遞增。2n<0時,過定點(1,1),在x0,上單調(diào)遞減。

  0

  第三章、函數(shù)的應(yīng)用

  一、函數(shù)的零點及性質(zhì):

  1、定義:對于函數(shù)yfx,若x0使得fx00,則稱x0為yfx的零點。2、性質(zhì):1若fafb<0,則函數(shù)yfx在a,b上至少存在一個零點。

  02函數(shù)yfx在a,b上存在零點,不一定有fafb<0

  03在相鄰兩個零點之間所有的函數(shù)值保持同號。二、二分法求方程fx0的近似解

  1、原理與步驟:①確定一閉區(qū)間a,b,使fafb<0,給定精確度;

  珠暉區(qū)青少年活動中心中學(xué)部(博學(xué)教育培訓(xùn)中心)

  ②令x1ab,并計算fx1;2③若fx1=0則x1為函數(shù)的零點,若fafx1<0,則x0a,x1,令b=x1;若fx1fb<0則x0x1,b,令a=x1

  ④直到ab<時,我們把a或b稱為fx0的近似解。

  三、函數(shù)模型及應(yīng)用:

  常見的函數(shù)模型有:①直線上升型:ykxb;②對數(shù)增長型:ylogax③指數(shù)爆炸型:yn(1p),n為基礎(chǔ)數(shù)值,p為增長率。

  x珠暉區(qū)青少年活動中心中學(xué)部(博學(xué)教育培訓(xùn)中心)

  訓(xùn)練題

  一、選擇題

  1.已知全集U2,1,2,3,4,A=1,2,B=3,則A(CuB)等于()A.{1,2,3}B.{1,2,4}C.{1)D.{4}

  2.已知函數(shù)f(x)ax在(O,2)內(nèi)的值域是(a2,1),則函數(shù)yf(x)的圖象是()

  3.下列函數(shù)中,有相同圖象的一組是()

  Ay=x-1,y=(x1)2By=x1x1,y=x21Cy=lgx-2,y=lg

  xDy=4lgx,y=2lgx21004.已知奇函數(shù)f(x)在[a,b]上減函數(shù),偶函數(shù)g(x)在[a,b]上是增函數(shù),則在[-b,-a](b>a>0)上,f(x)與g(x)分別是()A.f(x)和g(x)都是增函數(shù)B.f(x)和g(x)都是減函數(shù)

  C.f(x)是增函數(shù),g(x)是減函數(shù)D.f(x)是減函數(shù),g(x)是增函數(shù)。5.方程lnx=2必有一個根所在的區(qū)間是()xD.(e,+∞)

  A.(1,2)B.(2,3)C.(e,3)6.下列關(guān)系式中,成立的是()A.log34>()>log110

  3150B.log110>()>log34

  3150C.log34>log110>()

  3150D.log110>log34>()

  31507.已知函數(shù)f(x)的定義域為R,f(x)在R上是減函數(shù),若f(x)的一個零點為1,則不等式

  f(2x1)0的解集為()

  A.(,)B.(,)C.(1,)D.(,1)8.設(shè)f(log2x)=2(x>0)則f(3)的值為(A.128

  B.256

  C.512

  x1212)

  D.珠暉區(qū)青少年活動中心中學(xué)部(博學(xué)教育培訓(xùn)中心)

  9.已知a>0,a≠1則在同一直角坐標(biāo)系中,函數(shù)y=a3-x和y=loga(-x)的圖象可能是()

  33222111-224-2-124-2-124-2-124A

  10.若loga

  -2B

  -2C

  -2D

  2A.0珠暉區(qū)青少年活動中心中學(xué)部(博學(xué)教育培訓(xùn)中心)

  18.已知函數(shù)f(x)3x,f(a2)18,g(x)3ax4x定義域[0,1];(1)求a的值;

 。2)若函數(shù)g(x)在[0,1]上是單調(diào)遞減函數(shù),求實數(shù)的取值范圍;

  x219.已知函數(shù)f(x-3)=lga(a>1,且a≠1)26-x21)求函數(shù)f(x)的解析式及其定義域2)判斷函數(shù)f(x)的奇偶性

高一數(shù)學(xué)知識點總結(jié)12

  集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

  2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

  實例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同”

  結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

  A?① 任何一個集合是它本身的子集。A

  B那就說集合A是集合B的真子集,記作A B(或B A)?B,且A?②真子集:如果A

  C?C ,那么 A?B, B?③如果 A

  A 那么A=B?B 同時 B?④ 如果A

  3. 不含任何元素的集合叫做空集,記為Φ

  規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

  集合的運算

  1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

  記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.

  2、并集的'定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.

  3、交集與并集的性質(zhì):A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A.

  4、全集與補集

  (1)補集:設(shè)S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

  A}?S且 x? x?記作: CSA 即 CSA ={x

  (2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。

  (3)性質(zhì):⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

高一數(shù)學(xué)知識點總結(jié)13

  高一上學(xué)期數(shù)學(xué)知識點歸納

  1、多面體的結(jié)構(gòu)特征

 。1)棱柱有兩個面相互平行,其余各面都是平行四邊形,每相鄰兩個四邊形的公共邊平行。

  正棱柱:側(cè)棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱、反之,正棱柱的底面是正多邊形,側(cè)棱垂直于底面,側(cè)面是矩形。

 。2)棱錐的底面是任意多邊形,側(cè)面是有一個公共頂點的三角形、

  正棱錐:底面是正多邊形,頂點在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐、特別地,各棱均相等的正三棱錐叫正四面體、反過來,正棱錐的底面是正多邊形,且頂點在底面的射影是底面正多邊形的中心。

 。3)棱臺可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形。

  2、旋轉(zhuǎn)體的結(jié)構(gòu)特征

 。1)圓柱可以由矩形繞一邊所在直線旋轉(zhuǎn)一周得到。

  (2)圓錐可以由直角三角形繞一條直角邊所在直線旋轉(zhuǎn)一周得到。

 。3)圓臺可以由直角梯形繞直角腰所在直線旋轉(zhuǎn)一周或等腰梯形繞上下底面中心所在直線旋轉(zhuǎn)半周得到,也可由平行于底面的平面截圓錐得到。

 。4)球可以由半圓面繞直徑旋轉(zhuǎn)一周或圓面繞直徑旋轉(zhuǎn)半周得到。

  3、空間幾何體的三視圖

  空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側(cè)視圖、俯視圖、

  三視圖的長度特征:“長對正,寬相等,高平齊”,即正視圖和側(cè)視圖一樣高,正視圖和俯視圖一樣長,側(cè)視圖和俯視圖一樣寬、若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三視圖中,要注意實、虛線的畫法、

  4、空間幾何體的直觀圖

  空間幾何體的直觀圖常用斜二測畫法來畫,基本步驟是:

  (1)畫幾何體的底面

  在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點O,畫直觀圖時,把它們畫成對應(yīng)的x′軸、y′軸,兩軸相交于點O′,且使∠x′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線段,在直觀圖中平行于x′軸、y′軸、已知圖形中平行于x軸的線段,在直觀圖中長度不變,平行于y軸的線段,長度變?yōu)樵瓉淼囊话搿?/p>

  (2)畫幾何體的'高

  在已知圖形中過O點作z軸垂直于xOy平面,在直觀圖中對應(yīng)的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線段,在直觀圖中仍平行于z′軸且長度不變。

  反比例函數(shù)

  形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

  自變量x的取值范圍是不等于0的一切實數(shù)。

  反比例函數(shù)圖像性質(zhì):

  反比例函數(shù)的圖像為雙曲線。

  由于反比例函數(shù)屬于奇函數(shù),有f(—x)=—f(x),圖像關(guān)于原點對稱。

  另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標(biāo)軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

  k分別為正和負(fù)(2和—2)時的函數(shù)圖像。

  當(dāng)K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

  當(dāng)K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

  反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。

  學(xué)好高中數(shù)學(xué)的方法

  克服畏難抵觸心理

  我們說,做什么事情都要有一個良好的心態(tài)。據(jù)科學(xué)家們分析,人在有心態(tài)問題時是斷然不能發(fā)揮其平時百分之一百的水平,如果是在中考甚至是在高考的考場當(dāng)中,心態(tài)出現(xiàn)了嚴(yán)重的問題,那十年的光陰一瞬間就要功虧一簣了,這豈不是讓眾多考生無顏見江東父老了嗎。

  其實,你絕對沒有必要對數(shù)學(xué)有任何的心理抵觸。

  舉一個簡單的例子,如一些應(yīng)用題,雖然看上去文字描述比較多,但實際分析實用的數(shù)據(jù)僅僅有那么幾個而已,然后通過建立數(shù)學(xué)模型而列出方程,進(jìn)而得出答案。

  等完成后你會覺得數(shù)學(xué)最難的試題也不過如此的時候,頓時你的自豪感就會由然而生,這時你對數(shù)學(xué)的抵觸情緒便云開霧散,灰飛煙滅了。

  上課40分鐘很重要

  對于課堂上老師所講的每一個公式,每一條定理都要深究其源,這樣即便在考試當(dāng)中忘了公式,也可以很好的解決問題,不至于內(nèi)心的慌亂和緊張。另外要充分利用好課堂這短短的45分鐘的時間,盡量在課上將所學(xué)習(xí)的知識吸收,這樣回到家后才能進(jìn)一步展開接下來的學(xué)習(xí),節(jié)約時間。

  看書寫作業(yè)的順序

  看書和寫作業(yè)要注意順序,有的老師說先寫作業(yè)再復(fù)習(xí),其實經(jīng)過證明這是完全不對的。因為在下課之后到你回家時又經(jīng)過了一段時間,這段時間難免你會把老師所講的重點或細(xì)節(jié)忘記,這種情況下寫作業(yè)難免會有一些問題。其實,我們要養(yǎng)成良好的學(xué)習(xí)方法,盡量回家后先復(fù)習(xí)一下當(dāng)天學(xué)習(xí)的知識,特別是所記的筆記要重點關(guān)照,然后在寫作業(yè),這樣效果更佳。

  提升數(shù)學(xué)成績的方法

  注重課本上的例題

  也許你會這樣說:那些例題太簡單了,我一看就會了。其實,如果你不注意那些“過于簡單”的例題的話,在考試當(dāng)中就會吃大虧。大家都知道,近幾年來不論是中考、高考等各種數(shù)學(xué)考試的解答試題基本上都是經(jīng)過例題改編而成,如果你平時養(yǎng)成了對例題不重視的習(xí)慣,那么到考試時候,它的特殊氣氛會使你處處都感到緊張,進(jìn)而對這樣簡單的試題束手無策。所以,我們一定要在平時的學(xué)習(xí)中養(yǎng)成注重例題的習(xí)慣,這樣會在考試當(dāng)中多一分勝算。

  面對考試,平時要彌補漏洞

  對于平時的測驗和考試不要注重于成績,一定要找到自己的漏洞?荚嚨墓δ芫褪且獧z驗自己平時的學(xué)習(xí)上還有那些漏洞,有些同學(xué)過于注重成績,怕在朋友面前丟面子。如果是這樣,我勸你還是多丟面子為好。錯題是你的寶貴經(jīng)驗,錯一次并不可怕,下一次做對不就可以了。俗話說:久病成醫(yī),說一句白話,你錯的越多,考試再做這樣的試題正確率就會比別人更高,笑到最后的才笑得最好。

  準(zhǔn)備錯題本,積累經(jīng)驗

  學(xué)習(xí)數(shù)學(xué),錯題不可避免。對錯題的心態(tài)人人各異,處理好反而會促進(jìn)你的學(xué)習(xí)熱情,但處理不好會使你學(xué)習(xí)數(shù)學(xué)的動力進(jìn)一步減退。對于錯題,希望大家準(zhǔn)備一個本,將錯題都寫到這個本上,特別要寫出此題所考的知識點,自己的想法,正確答案,而自己怎么不能往正確的方向上想等等。日積月累,這個本便是你寶貴的財富,也是你的“小辮子”。它是你的弱點,但攻克它雖然要費一些時間,但要相信你會在考試當(dāng)中充分地體現(xiàn)你自己的優(yōu)勢的。

高一數(shù)學(xué)知識點總結(jié)14

  一、集合及其表示

  1、集合的含義:

  “集合”這個詞首先讓我們想到的是上體育課或者開會時老師經(jīng)常喊的“全體集合”。數(shù)學(xué)上的“集合”和這個意思是一樣的,只不過一個是動詞一個是名詞而已。

  所以集合的含義是:某些指定的對象集在一起就成為一個集合,簡稱集,其中每一個對象叫元素。比如高一二班集合,那么所有高一二班的同學(xué)就構(gòu)成了一個集合,每一個同學(xué)就稱為這個集合的元素。

  2、集合的表示

  通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬于集合A,記作d?A。

  有一些特殊的集合需要記憶:

  非負(fù)整數(shù)集(即自然數(shù)集)N正整數(shù)集N_或N+

  整數(shù)集Z有理數(shù)集Q實數(shù)集R

  集合的表示方法:列舉法與描述法。

  ①列舉法:{a,b,c……}

 、诿枋龇ǎ簩⒓现械脑氐墓矊傩悦枋龀鰜。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}

 、壅Z言描述法:例:{不是直角三角形的三角形}

  例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}

  強調(diào):描述法表示集合應(yīng)注意集合的代表元素

  A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數(shù)組元素(x,y),集合B中只有元素y。

  3、集合的三個特性

 。1)無序性

  指集合中的元素排列沒有順序,如集合A={1,2},集合B={2,1},則集合A=B。

  例題:集合A={1,2},B={a,b},若A=B,求a、b的值。

  解:,A=B

  注意:該題有兩組解。

 。2)互異性

  指集合中的元素不能重復(fù),A={2,2}只能表示為{2}

  (3)確定性

  集合的確定性是指組成集合的元素的性質(zhì)必須明確,不允許有模棱兩可、含混不清的。情況。

  集合的含義

  集合的中元素的三個特性:

  元素的確定性如:世界上的山

  元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

  元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

  3、集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  集合的表示方法:列舉法與描述法。

  注意:常用數(shù)集及其記法:

  非負(fù)整數(shù)集(即自然數(shù)集)記作:N

  正整數(shù)集NxN+整數(shù)集Z有理數(shù)集Q實數(shù)集R

  列舉法:{a,b,c……}

  描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。{x(R|x—3>2},{x|x—3>2}

  語言描述法:例:{不是直角三角形的三角形}

  Venn圖:

  4、集合的分類:

  有限集含有有限個元素的集合

  無限集含有無限個元素的集合

  空集不含任何元素的集合例:{x|x2=—5}

  對數(shù)函數(shù)

  對數(shù)函數(shù)的一般形式為,它實際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。

  右圖給出對于不同大小a所表示的函數(shù)圖形:

  可以看到對數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對稱圖形,因為它們互為反函數(shù)。

 。1)對數(shù)函數(shù)的定義域為大于0的實數(shù)集合。

 。2)對數(shù)函數(shù)的值域為全部實數(shù)集合。

 。3)函數(shù)總是通過(1,0)這點。

  (4)a大于1時,為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時,函數(shù)為單調(diào)遞減函數(shù),并且下凹。

 。5)顯然對數(shù)函數(shù)。

  1、函數(shù)零點的定義

  (1)對于函數(shù))(xfy,我們把方程0)(xf的實數(shù)根叫做函數(shù))(xfy)的零點。

  (2)方程0)(xf有實根函數(shù)(yfx)的圖像與x軸有交點函數(shù)(yfx)有零點。因此判斷一個函數(shù)是否有零點,有幾個零點,就是判斷方程0)(xf是否有實數(shù)根,有幾個實數(shù)根。函數(shù)零點的求法:解方程0)(xf,所得實數(shù)根就是(fx)的零點(3)變號零點與不變號零點

  ①若函數(shù)(fx)在零點0x左右兩側(cè)的函數(shù)值異號,則稱該零點為函數(shù)(fx)的變號零點。②若函數(shù)(fx)在零點0x左右兩側(cè)的函數(shù)值同號,則稱該零點為函數(shù)(fx)的不變號零點。

  ③若函數(shù)(fx)在區(qū)間,ab上的圖像是一條連續(xù)的曲線,則0

  2、函數(shù)零點的判定

  (1)零點存在性定理:如果函數(shù))(xfy在區(qū)間],[ba上的圖象是連續(xù)不斷的曲線,并且有(fa)(fb),那么,函數(shù)(xfy)在區(qū)間,ab內(nèi)有零點,即存在,(0bax,使得0)(0xf,這個0x也就是方程0)(xf的根。

 。2)函數(shù))(xfy零點個數(shù)(或方程0)(xf實數(shù)根的個數(shù))確定方法

 、俅鷶(shù)法:函數(shù))(xfy的零點0)(xf的根;②(幾何法)對于不能用求根公式的方程,可以將它與函數(shù))(xfy的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點。

 。3)零點個數(shù)確定

  0)(xfy有2個零點0)(xf有兩個不等實根;0)(xfy有1個零點0)(xf有兩個相等實根;0)(xfy無零點0)(xf無實根;對于二次函數(shù)在區(qū)間,ab上的零點個數(shù),要結(jié)合圖像進(jìn)行確定。

  3、二分法

 。1)二分法的定義:對于在區(qū)間[,]ab上連續(xù)不斷且(fa)(fb)的函數(shù)(yfx),通過不斷地把函數(shù)(yfx)的零點所在的區(qū)間一分為二,使區(qū)間的兩個端點逐步逼近零點,進(jìn)而得到零點的近似值的方法叫做二分法;

 。2)用二分法求方程的近似解的步驟:

 、俅_定區(qū)間[,]ab,驗證(fa)(fb)給定精確度e;

 、谇髤^(qū)間(,)ab的中點c;③計算(fc);

  (ⅰ)若(fc),則c就是函數(shù)的零點;

  (ⅱ)若(fa)(fc),則令bc(此時零點0(,)xac);(ⅲ)若(fc)(fb),則令ac(此時零點0(,)xcb);

 、芘袛嗍欠襁_(dá)到精確度e,即ab,則得到零點近似值為a(或b);否則重復(fù)②至④步。

  集合間的基本關(guān)系

  1、子集,A包含于B,記為:,有兩種可能

  (1)A是B的一部分,

  (2)A與B是同一集合,A=B,A、B兩集合中元素都相同。

  反之:集合A不包含于集合B,記作。

  如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三個集合的關(guān)系可以表示為,,B=C。A是C的子集,同時A也是C的真子集。

  2、真子集:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)

  3、不含任何元素的`集合叫做空集,記為Φ。Φ是任何集合的子集。

  4、有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-2個非空真子集。如A={1,2,3,4,5},則集合A有25=32個子集,25-1=31個真子集,25-2=30個非空真子集。

  例:集合共有個子集。(13年高考第4題,簡單)

  練習(xí):A={1,2,3},B={1,2,3,4},請問A集合有多少個子集,并寫出子集,B集合有多少個非空真子集,并將其寫出來。

  解析:

  集合A有3個元素,所以有23=8個子集。分別為:①不含任何元素的子集Φ;②含有1個元素的子集{1}{2}{3};③含有兩個元素的子集{1,2}{1,3}{2,3};④含有三個元素的子集{1,2,3}。

  集合B有4個元素,所以有24-2=14個非空真子集。具體的子集自己寫出來。

  此處這么羅嗦主要是為了讓同學(xué)們注意寫的順序,數(shù)學(xué)就是要講究嚴(yán)謹(jǐn)性和邏輯性的。一定要養(yǎng)成自己的邏輯習(xí)慣。如果就是為了提高計算能力倒不如直接去菜場賣菜算了,絕對能飛速提高的,那學(xué)數(shù)學(xué)也沒什么必要了。

  一、函數(shù)模型及其應(yīng)用

  本節(jié)主要包括函數(shù)的模型、函數(shù)的應(yīng)用等知識點。主要是理解函數(shù)解應(yīng)用題的一般步驟靈活利用函數(shù)解答實際應(yīng)用題。

  1、常見的函數(shù)模型有一次函數(shù)模型、二次函數(shù)模型、指數(shù)函數(shù)模型、對數(shù)函數(shù)模型、分段函數(shù)模型等。

  2、用函數(shù)解應(yīng)用題的基本步驟是:

 。1)閱讀并且理解題意。(關(guān)鍵是數(shù)據(jù)、字母的實際意義);

  (2)設(shè)量建模;

  (3)求解函數(shù)模型;

  (4)簡要回答實際問題。

  常見考法:

  本節(jié)知識在段考和高考中考查的形式多樣,頻率較高,選擇題、填空題和解答題都有。多考查分段函數(shù)和較復(fù)雜的函數(shù)的最值等問題,屬于拔高題,難度較大。

  誤區(qū)提醒:

  1、求解應(yīng)用性問題時,不僅要考慮函數(shù)本身的定義域,還要結(jié)合實際問題理解自變量的取值范圍。

  2、求解應(yīng)用性問題時,首先要弄清題意,分清條件和結(jié)論,抓住關(guān)鍵詞和量,理順數(shù)量關(guān)系,然后將文字語言轉(zhuǎn)化成數(shù)學(xué)語言,建立相應(yīng)的數(shù)學(xué)模型。

  【典型例題】

  例1:

  (1)某種儲蓄的月利率是0。36%,今存入本金100元,求本金與利息的和(即本息和)y(元)與所存月數(shù)x之間的函數(shù)關(guān)系式,并計算5個月后的本息和(不計復(fù)利)。

 。2)按復(fù)利計算利息的一種儲蓄,本金為a元,每期利率為r,設(shè)本利和為y,存期為x,寫出本利和y隨存期x變化的函數(shù)式。如果存入本金1000元,每期利率2。25%,試計算5期后的本利和是多少?解:(1)利息=本金×月利率×月數(shù)。y=100+100×0。36%·x=100+0。36x,當(dāng)x=5時,y=101。8,∴5個月后的本息和為101。8元。

  例2:

  某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤與投資單位是萬元)

  (1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式。

 。2)該企業(yè)已籌集到10萬元資金,并全部投入A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能是企業(yè)獲得利潤,其利潤約為多少萬元。(精確到1萬元)。

  集合

  集合具有某種特定性質(zhì)的事物的總體。這里的“事物”可以是人,物品,也可以是數(shù)學(xué)元素。例如:

  1、分散的人或事物聚集到一起;使聚集:緊急~。

  2、數(shù)學(xué)名詞。一組具有某種共同性質(zhì)的數(shù)學(xué)元素:有理數(shù)的~。

  3、口號等等。集合在數(shù)學(xué)概念中有好多概念,如集合論:集合是現(xiàn)代數(shù)學(xué)的基本概念,專門研究集合的理論叫做集合論。康托(Cantor,G.F.P.,1845年—1918年,德國數(shù)學(xué)家先驅(qū),是集合論的,目前集合論的基本思想已經(jīng)滲透到現(xiàn)代數(shù)學(xué)的所有領(lǐng)域。

  集合,在數(shù)學(xué)上是一個基礎(chǔ)概念。什么叫基礎(chǔ)概念?基礎(chǔ)概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下“定義”。集合

  集合是把人們的直觀的或思維中的某些確定的能夠區(qū)分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。

  元素與集合的關(guān)系

  元素與集合的關(guān)系有“屬于”與“不屬于”兩種。

  集合與集合之間的關(guān)系

  某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ?占侨魏渭系淖蛹侨魏畏强占恼孀蛹。任何集合是它本身的子集。子集,真子集都具有傳遞性。『說明一下:如果集合A的所有元素同時都是集合B的元素,則A稱作是B的子集,寫作A?B。若A是B的子集,且A不等于B,則A稱作是B的真子集,一般寫作A?B。中學(xué)教材課本里將?符號下加了一個≠符號(如右圖),不要混淆,考試時還是要以課本為準(zhǔn)。所有男人的集合是所有人的集合的真子集。』

  集合的幾種運算法則

  并集:以屬于A或?qū)儆贐的元素為元素的集合稱為A與B的并(集),記作A∪B(或B∪A),讀作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}交集:以屬于A且屬于B的元差集表示

  素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。那么因為A和B中都有1,5,所以A∩B={1,5}。再來看看,他們兩個中含有1,2,3,5這些個元素,不管多少,反正不是你有,就是我有。那么說A∪B={1,2,3,5}。圖中的陰影部分就是A∩B。有趣的是;例如在1到105中不是3,5,7的整倍數(shù)的數(shù)有多少個。結(jié)果是3,5,7每項減集合

  1再相乘。48個。對稱差集:設(shè)A,B為集合,A與B的對稱差集A?B定義為:A?B=(A-B)∪(B-A)例如:A={a,b,c},B={b,d},則A?B={a,c,d}對稱差運算的另一種定義是:A?B=(A∪B)-(A∩B)無限集:定義:集合里含有無限個元素的集合叫做無限集有限集:令N_是正整數(shù)的全體,且N_n={1,2,3,……,n},如果存在一個正整數(shù)n,使得集合A與N_n一一對應(yīng),那么A叫做有限集合。差:以屬于A而不屬于B的元素為元素的集合稱為A與B的差(集)。記作:AB={x│x∈A,x不屬于B}。注:空集包含于任何集合,但不能說“空集屬于任何集合”。補集:是從差集中引出的概念,指屬于全集U不屬于集合A的元素組成的集合稱為集合A的補集,記作CuA,即CuA={x|x∈U,且x不屬于A}空集也被認(rèn)為是有限集合。例如,全集U={1,2,3,4,5}而A={1,2,5}那么全集有而A中沒有的3,4就是CuA,是A的補集。CuA={3,4}。在信息技術(shù)當(dāng)中,常常把CuA寫成~A。

  集合元素的性質(zhì)

  1.確定性:每一個對象都能確定是不是某一集合的元素,沒有確定性就不能成為集合,例如“個子高的同學(xué)”“很小的數(shù)”都不能構(gòu)成集合。這個性質(zhì)主要用于判斷一個集合是否能形成集合。

  2.獨立性:集合中的元素的個數(shù)、集合本身的個數(shù)必須為自然數(shù)。

  3.互異性:集合中任意兩個元素都是不同的對象。如寫成{1,1,2},等同于{1,2};ギ愋允辜现械脑厥菦]有重復(fù),兩個相同的對象在同一個集合中時,只能算作這個集合的一個元素。

  4.無序性:{a,b,c}{c,b,a}是同一個集合。

  5.純粹性:所謂集合的純粹性,用個例子來表示。集合A={x|x

高一數(shù)學(xué)知識點總結(jié)15

  空間點、直線、平面之間的位置關(guān)系

  以下知識點需要我們?nèi)ダ斫,記憶?/p>

  1、數(shù)學(xué)所說的直線是無限延伸的,沒有起點,也沒有終點。

  2、數(shù)學(xué)所說的平面是無限延伸的,沒有起始線,也沒有終點線。

  3、公理1 如果一條直線上的兩點在一個平面內(nèi),那么這條直線在此平面內(nèi)。

  4、過不在同一直線上的三點,有且只有一個平面。

  5、如果兩個不重合的平面有一個公共點,那么它們有且只有一個過該點的公共直線。

  6、平行于同一條直線的兩條直線平行。

  7、直線在平面內(nèi),因為直線上有無數(shù)多個點,平面上也有無數(shù)多個點,因此用子集的符號表示直線在平面內(nèi)。

  8、直線與平面的位置關(guān)系,直線與直線的位置關(guān)系是本節(jié)課的重點和難點。

  9、做位置關(guān)系的題目,可以借助實物,直觀理解。

  一、直線與方程考試內(nèi)容及考試要求

  考試內(nèi)容:

  1.直線的傾斜角和斜率;直線方程的點斜式和兩點式;直線方程的一般式;

  2.兩條直線平行與垂直的'條件;兩條直線的交角;點到直線的距離;

  考試要求:

  1.理解直線的傾斜角和斜率的概念,掌握過兩點的直線的斜率公式,掌握直線方程的點斜式、兩點式、一般式,并能根據(jù)條件熟練地求出直線方程。

  2.掌握兩條直線平行與垂直的條件,兩條直線所成的角和點到直線的距離公式能夠根據(jù)直

  線的方程判斷兩條直線的位置關(guān)系。

【高一數(shù)學(xué)知識點總結(jié)】相關(guān)文章:

高一數(shù)學(xué)知識點總結(jié)12-06

高一數(shù)學(xué)知識點總結(jié)07-07

高一必修二數(shù)學(xué)知識點總結(jié)08-16

高一數(shù)學(xué)必修4知識點總結(jié)07-22

高一數(shù)學(xué)必修1知識點總結(jié)03-23

高一數(shù)學(xué)必修一知識點總結(jié)03-24

高一數(shù)學(xué)集合知識點07-25

高一數(shù)學(xué)知識點03-28

高一數(shù)學(xué)知識點總結(jié)(精選15篇)04-28

高一數(shù)學(xué)知識點總結(jié)(精選15篇)08-08