av手机免费在线观看,国产女人在线视频,国产xxxx免费,捆绑调教一二三区,97影院最新理论片,色之久久综合,国产精品日韩欧美一区二区三区

高一數(shù)學知識點總結

時間:2024-07-07 10:31:28 數(shù)學 我要投稿

高一數(shù)學知識點總結

  總結是對某一特定時間段內的學習和工作生活等表現(xiàn)情況加以回顧和分析的一種書面材料,它可使零星的、膚淺的、表面的感性認知上升到全面的、系統(tǒng)的、本質的理性認識上來,因此好好準備一份總結吧。那么你真的懂得怎么寫總結嗎?以下是小編為大家收集的高一數(shù)學知識點總結,僅供參考,希望能夠幫助到大家。

高一數(shù)學知識點總結

高一數(shù)學知識點總結1

  第一章:解三角形

  1、正弦定理:在C中,a、b、c分別為角、、C的對邊,R為C的外接圓的半徑,則有asinbsina2RcsinC2R.

  2、正弦定理的變形公式:①a2Rsin,b2Rsin,c2RsinC;②sin,sinb2R,sinCc2R;(正弦定理的變形經常用在有三角函數(shù)的等式中)③a:b:csin:sin:sinC;④abcsinsinsinCsinsinsinC111bcsinabsinCacsin.222abc.

  3、三角形面積公式:SC

  4、余定理:在C中,有a2b2c22bccos,b2a2c22accos,cab2abcosC.222

  5、余弦定理的推論:cosbca2bc222,cosacb2ac222,cosCabc2ab222.

  6、設a、b、c是C的角、、C的對邊,則:①若a2b2c2,則C90為直角三角形;②若a2b2c2,則C90為銳角三角形;③若a2b2c2,則C90為鈍角三角形.

  第二章:數(shù)列

  1、數(shù)列:按照一定順序排列著的一列數(shù).

  2、數(shù)列的項:數(shù)列中的每一個數(shù).

  3、有窮數(shù)列:項數(shù)有限的數(shù)列.

  4、無窮數(shù)列:項數(shù)無限的數(shù)列.

  5、遞增數(shù)列:從第2項起,每一項都不小于它的前一項的數(shù)列.

  6、遞減數(shù)列:從第2項起,每一項都不大于它的前一項的數(shù)列.

  7、常數(shù)列:各項相等的數(shù)列.

  8、擺動數(shù)列:從第2項起,有些項大于它的前一項,有些項小于它的前一項的數(shù)列.

  9、數(shù)列的通項公式:表示數(shù)列an的第n項與序號n之間的關系的公式.

  10、數(shù)列的遞推公式:表示任一項an與它的前一項an1(或前幾項)間的關系的公式.

  11、如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),則這個數(shù)列稱為等差數(shù)列,這個常數(shù)稱為等差數(shù)列的公差.

  12、由三個數(shù)a,,b組成的等差數(shù)列可以看成最簡單的等差數(shù)列,則稱為a與b的等差中項.若bac2,則稱b為a與c的等差中項.

  13、若等差數(shù)列an的首項是a1,公差是d,則ana1n1d.通項公式的變形:①anamnmd;②a1ann1d;③d⑤danamnmana1n1;④nana1d1;

  14、若an是等差數(shù)列,且mnpq(m、n、p、q),則amanapaq;若an是等差數(shù)列,且2npq(n、p、q),則2anapaq;下角標成等差數(shù)列的項仍是等差數(shù)列;連續(xù)m項和構成的數(shù)列成等差數(shù)列。

  15、等差數(shù)列的前n項和的公式:①Snna1an2;②Snna1nn12d.

  16、等差數(shù)列的前n項和的性質:①若項數(shù)為2nn,則S2nnanan1,且S偶S奇nd,S奇S偶anan1.②若項數(shù)為2n1n,則S2n12n1an,且S奇S偶an,S奇S偶nn1(其中S奇nan,S偶n1an).

  17、如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù),則這個數(shù)列稱為等比數(shù)列,這個常數(shù)稱為等比數(shù)列的公比.

  18、在a與b中間插入一個數(shù)G,使a,G,b成等比數(shù)列,則G稱為a與b的等比中項.若G2ab,則稱G為a與b的等比中項.

  19、若等比數(shù)列an的首項是a1,公比是q,則ana1q.

  20、通項公式的變形:①anamq;②a1anqn1;③qn1ana1;④qnmanam.

  21、若an是等比數(shù)列,且mnpq(m、n、p、q),則amanapaq;若an是等比數(shù)列,且2npq(n、p、q),則anapaq;下角標成等差數(shù)列的項仍是等比數(shù)列;連續(xù)m2項和構成的數(shù)列成等比數(shù)列。

  22、等比數(shù)列an的前n項和的公式:Sna11qnaaq.1nq11q1qq1時,Sna11qa11qq,即常數(shù)項與q項系數(shù)互為相反數(shù)。

  23、等比數(shù)列的`前n項和的性質:①若項數(shù)為2nn,則SS偶奇q.n②SnmSnqSm.③Sn,S2nSn,S3nS2n成等比數(shù)列.

  24、an與Sn的關系:anSnSn1S1n2n1

  一些方法:

  一、求通項公式的方法:

  1、由數(shù)列的前幾項求通項公式:待定系數(shù)法

  ①若相鄰兩項相減后為同一個常數(shù)設為anknb,列兩個方程求解;

 、谌粝噜弮身椣鄿p兩次后為同一個常數(shù)設為anan2bnc,列三個方程求解;③若相鄰兩項相減后相除后為同一個常數(shù)設為anaq

  2、由遞推公式求通項公式:

  ①若化簡后為an1and形式,可用等差數(shù)列的通項公式代入求解;②若化簡后為an1anf(n),形式,可用疊加法求解;

 、廴艋喓鬄閍n1anq形式,可用等比數(shù)列的通項公式代入求解;

 、苋艋喓鬄閍n1kanb形式,則可化為(an1x)k(anx),從而新數(shù)列{anx}是等比數(shù)列,用等比數(shù)列求解{anx}的通項公式,再反過來求原來那個。(其中x是用待定系數(shù)法來求得)3、由求和公式求通項公式:

 、賏1S1②anSnSn1③檢驗a1是否滿足an,若滿足則為an,不滿足用分段函數(shù)寫。

  4、其他

 。1)anan1fn形式,fn便于求和,方法:迭加;

  例如:anan1n1有:anan1n1a2a13a3a24anan1n1各式相加得ana134n1a1nb,q為相除后的常數(shù),列兩個方程求解;

  n4n1(2)anan12anan1形式,同除以anan1,構造倒數(shù)為等差數(shù)列;

  anan1anan121an1例如:anan12anan1,則1,即為以-2為公差的等差數(shù)列。anan1(3)anqan1m形式,q1,方法:構造:anxqan1x為等比數(shù)列;

  例如:an2an12,通過待定系數(shù)法求得:an22an12,即an2等比,公比為2。(4)anqan1pnr形式:構造:anxnyqan1xn1y為等比數(shù)列;(5)anqan1p形式,同除p,轉化為上面的幾種情況進行構造;因為anqan1pn,則anpnqan1ppn11,若qp1轉化為(1)的方法,若不為1,轉化為(3)的方法

  二、等差數(shù)列的求和最值問題:(二次函數(shù)的配方法;通項公式求臨界項法)

 、偃簪谌鬭k0,則Sn有最大值,當n=k時取到的最大值k滿足d0a0k1a10a10ak0,則Sn有最小值,當n=k時取到的最大值k滿足d0a0k1

  三、數(shù)列求和的方法:

 、侬B加法:倒序相加,具備等差數(shù)列的相關特點的,倒序之后和為定值;

 、阱e位相減法:適用于通項公式為等差的一次函數(shù)乘以等比的數(shù)列形式,如:an2n13;n③分式時拆項累加相約法:適用于分式形式的通項公式,把一項拆成兩個或多個的差的形式。如:an1nn11n1n1,an12n12n1111等;22n12n1④一項內含有多部分的拆開分別求和法:適用于通項中能分成兩個或幾個可以方便求和的部分,如:an2n1等;

  四、綜合性問題中

  ①等差數(shù)列中一些在加法和乘法中設一些數(shù)為ad和ad類型,這樣可以相加約掉,相乘為平方差;②等比數(shù)列中一些在加法和乘法中設一些數(shù)為aq和aq類型,這樣可以相乘約掉。

  第三章:不等式

  1、ab0ab;ab0ab;ab0ab.比較兩個數(shù)的大小可以用相減法;相除法;平方法;開方法;倒數(shù)法等等。

  2、不等式的性質:①abba;②ab,bcac;③abacbc;④ab,c0acbc,ab,c0acbc;⑤ab,cdacbd;⑥ab0,cd0acbd;⑦ab0ab⑧ab0nnnn,n1;anbn,n1.

  3、一元二次不等式:只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的不等式.

  4、二次函數(shù)的圖象、一元二次方程的根、一元二次不等式的解集間的關系:判別式b4ac201二次函數(shù)yaxbxc2a0的圖象有兩個相異實數(shù)根一元二次方程axbxc02有兩個相等實數(shù)根a0的根axbxc0一元二次不等式的解集2x1,2b2ax1x2b2a沒有實數(shù)根x1x2a0axbxc02xxx1或xx2bxx2aRa0xx1xx2

  5、二元一次不等式:含有兩個未知數(shù),并且未知數(shù)的次數(shù)是1的不等式.

  6、二元一次不等式組:由幾個二元一次不等式組成的不等式組.

  7、二元一次不等式(組)的解集:滿足二元一次不等式組的x和y的取值構成有序數(shù)對x,y,所有這樣的有序數(shù)對x,y構成的集合.

  8、在平面直角坐標系中,已知直線xyC0,坐標平面內的點x0,y0.①若0,x0y0C0,則點x0,y0在直線xyC0的上方.②若0,x0y0C0,則點x0,y0在直線xyC0的下方.

  9、在平面直角坐標系中,已知直線xyC0.①若0,則xyC0表示直線xyC0上方的區(qū)域;xyC0表示直線xyC0下方的區(qū)域.②若0,則xyC0表示直線xyC0下方的區(qū)域;xyC0表示直線xyC0上方的區(qū)域.

  10、線性約束條件:由x,y的不等式(或方程)組成的不等式組,是x,y的線性約束條件.目標函數(shù):欲達到最大值或最小值所涉及的變量x,y的解析式.線性目標函數(shù):目標函數(shù)為x,y的一次解析式.線性規(guī)劃問題:求線性目標函數(shù)在線性約束條件下的最大值或最小值問題.可行解:滿足線性約束條件的解x,y.可行域:所有可行解組成的集合.最優(yōu)解:使目標函數(shù)取得最大值或最小值的可行解.

  11、設a、b是兩個正數(shù),則ab稱為正數(shù)a、b的算術平均數(shù),ab稱為正數(shù)a、b的幾何平均數(shù).

  12、均值不等式定理:若a0,b0,則ab2ab,即ab2ab.

  13、常用的基本不等式:①a2b22aba,bR;22②abab2a,bR;③abab2a2b2ab22a0,b0;④22a,bR.

  14、極值定理:設x、y都為正數(shù),則有s(和為定值),則當xy時,積xy取得最大值s2⑴若xy.4⑵若xyp(積為定值),則當xy時,和xy取得最小值2p.

高一數(shù)學知識點總結2

  立體幾何初步

  1、柱、錐、臺、球的結構特征

  (1)棱柱:

  定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

  分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱柱、四棱柱、五棱柱等。

  表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱。

  幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。

  (2)棱錐

  定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。

  分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱錐、四棱錐、五棱錐等

  表示:用各頂點字母,如五棱錐

  幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

  (3)棱臺:

  定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。

  分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱態(tài)、四棱臺、五棱臺等

  表示:用各頂點字母,如五棱臺

  幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點

  (4)圓柱:

  定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體。

  幾何特征:①底面是全等的.圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

  (5)圓錐:

  定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。

  幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。

  (6)圓臺:

  定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

  幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。

  (7)球體:

  定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

  幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

  2、空間幾何體的三視圖

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)

  注:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;

  俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度;

  側視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。

  3、空間幾何體的直觀圖——斜二測畫法

  斜二測畫法特點:

 、僭瓉砼cx軸平行的線段仍然與x平行且長度不變;

 、谠瓉砼cy軸平行的線段仍然與y平行,長度為原來的一半。

  直線與方程

  (1)直線的傾斜角

  定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

  (2)直線的斜率

 、俣x:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當時,。當時,;當時,不存在。

 、谶^兩點的直線的斜率公式:

  注意下面四點:

  (1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

  (2)k與P1、P2的順序無關;

  (3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

  (4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

  冪函數(shù)

  定義:

  形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。

  定義域和值域:

  當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。當x為不同的數(shù)值時,冪函數(shù)的值域的不同情況如下:在x大于0時,函數(shù)的值域總是大于0的實數(shù)。在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。而只有a為正數(shù),0才進入函數(shù)的值域

  性質:

  對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當指數(shù)n是負整數(shù)時,設a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:

  排除了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);

  排除了為0這種可能,即對于x<0和x>0的所有實數(shù),q不能是偶數(shù);

  排除了為負數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負數(shù)。

  指數(shù)函數(shù)

  (1)指數(shù)函數(shù)的定義域為所有實數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。

  (2)指數(shù)函數(shù)的值域為大于0的實數(shù)集合。

  (3)函數(shù)圖形都是下凹的。

  (4)a大于1,則指數(shù)函數(shù)單調遞增;a小于1大于0,則為單調遞減的。

  (5)可以看到一個顯然的規(guī)律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

  (6)函數(shù)總是在某一個方向上無限趨向于X軸,永不相交。

  (7)函數(shù)總是通過(0,1)這點。

  (8)顯然指數(shù)函數(shù)無界。

  奇偶性

  定義

  一般地,對于函數(shù)f(x)

  (1)如果對于函數(shù)定義域內的任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。

  (2)如果對于函數(shù)定義域內的任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。

  (3)如果對于函數(shù)定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那么函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù)。

  (4)如果對于函數(shù)定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數(shù)f(x)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù)。

高一數(shù)學知識點總結3

  高一數(shù)學必修一知識點

  指數(shù)函數(shù)

  (一)指數(shù)與指數(shù)冪的運算

  1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

  當是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負數(shù)的次方根是一個負數(shù).此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).

  當是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù).此時,正數(shù)的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數(shù)沒有偶次方根;0的任何次方根都是0,記作。

  注意:當是奇數(shù)時,當是偶數(shù)時,

  2.分數(shù)指數(shù)冪

  正數(shù)的分數(shù)指數(shù)冪的意義,規(guī)定:

  0的正分數(shù)指數(shù)冪等于0,0的負分數(shù)指數(shù)冪沒有意義

  指出:規(guī)定了分數(shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的`運算性質也同樣可以推廣到有理數(shù)指數(shù)冪.

  3.實數(shù)指數(shù)冪的運算性質

  (二)指數(shù)函數(shù)及其性質

  1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域為R.

  注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負數(shù)、零和1.

  2、指數(shù)函數(shù)的圖象和性質

  高一上冊數(shù)學必修一知識點梳理

  空間幾何體表面積體積公式:

  1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

  2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

  3、a-邊長,S=6a2,V=a3

  4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc

  5、棱柱S-h-高V=Sh

  6、棱錐S-h-高V=Sh/3

  7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

  8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6

  9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h

  10、空心圓柱R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)

  11、r-底半徑h-高V=πr^2h/3

  12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6

  14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

  15、球臺r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6

  16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4

  17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

  人教版高一數(shù)學必修一知識點梳理

  1、柱、錐、臺、球的結構特征

  (1)棱柱:

  定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

  分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱柱、四棱柱、五棱柱等。

  表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱。

  幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。

  (2)棱錐

  定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。

  分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱錐、四棱錐、五棱錐等

  表示:用各頂點字母,如五棱錐

  幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

  (3)棱臺:

  定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。

  分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱態(tài)、四棱臺、五棱臺等

  表示:用各頂點字母,如五棱臺

  幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點

  (4)圓柱:

  定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體。

  幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

  (5)圓錐:

  定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。

  幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。

  (6)圓臺:

  定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

  幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。

  (7)球體:

  定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

  幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

  2、空間幾何體的三視圖

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)

  注:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;

  俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度;

  側視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。

  3、空間幾何體的直觀圖——斜二測畫法

  斜二測畫法特點:

 、僭瓉砼cx軸平行的線段仍然與x平行且長度不變;

 、谠瓉砼cy軸平行的線段仍然與y平行,長度為原來的一半。

高一數(shù)學知識點總結4

  【(一)、映射、函數(shù)、反函數(shù)】

  1、對應、映射、函數(shù)三個概念既有共性又有區(qū)別,映射是一種特殊的對應,而函數(shù)又是一種特殊的映射.

  2、對于函數(shù)的概念,應注意如下幾點:

  (1)掌握構成函數(shù)的三要素,會判斷兩個函數(shù)是否為同一函數(shù).

  (2)掌握三種表示法——列表法、解析法、圖象法,能根實際問題尋求變量間的函數(shù)關系式,特別是會求分段函數(shù)的解析式.

  (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復合函數(shù),其中g(x)為內函數(shù),f(u)為外函數(shù).

  3、求函數(shù)y=f(x)的反函數(shù)的一般步驟:

  (1)確定原函數(shù)的值域,也就是反函數(shù)的定義域;

  (2)由y=f(x)的解析式求出x=f-1(y);

  (3)將x,y對換,得反函數(shù)的習慣表達式y(tǒng)=f-1(x),并注明定義域.

  注意①:對于分段函數(shù)的反函數(shù),先分別求出在各段上的反函數(shù),然后再合并到一起.

 、谑煜さ膽,求f-1(x0)的值,合理利用這個結論,可以避免求反函數(shù)的過程,從而簡化運算.

  【(二)、函數(shù)的解析式與定義域】

  1、函數(shù)及其定義域是不可分割的整體,沒有定義域的函數(shù)是不存在的,因此,要正確地寫出函數(shù)的解析式,必須是在求出變量間的對應法則的同時,求出函數(shù)的定義域.求函數(shù)的定義域一般有三種類型:

  (1)有時一個函數(shù)來自于一個實際問題,這時自變量x有實際意義,求定義域要結合實際意義考慮;

  (2)已知一個函數(shù)的解析式求其定義域,只要使解析式有意義即可.如:

 、俜质降姆帜覆坏脼榱;

 、谂即畏礁谋婚_方數(shù)不小于零;

  ③對數(shù)函數(shù)的真數(shù)必須大于零;

 、苤笖(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)必須大于零且不等于1;

  ⑤三角函數(shù)中的正切函數(shù)y=tanx(x∈R,且k∈Z),余切函數(shù)y=cotx(x∈R,x≠kπ,k∈Z)等.

  應注意,一個函數(shù)的解析式由幾部分組成時,定義域為各部分有意義的自變量取值的公共部分(即交集).

  (3)已知一個函數(shù)的定義域,求另一個函數(shù)的定義域,主要考慮定義域的深刻含義即可.

  已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時f(x)的定義域,即g(x)的值域.

  2、求函數(shù)的解析式一般有四種情況

  (1)根據(jù)某實際問題需建立一種函數(shù)關系時,必須引入合適的變量,根據(jù)數(shù)學的有關知識尋求函數(shù)的解析式.

  (2)有時題設給出函數(shù)特征,求函數(shù)的解析式,可采用待定系數(shù)法.比如函數(shù)是一次函數(shù),可設f(x)=ax+b(a≠0),其中a,b為待定系數(shù),根據(jù)題設條件,列出方程組,求出a,b即可.

  (3)若題設給出復合函數(shù)f[g(x)]的表達式時,可用換元法求函數(shù)f(x)的表達式,這時必須求出g(x)的值域,這相當于求函數(shù)的定義域.

  (4)若已知f(x)滿足某個等式,這個等式除f(x)是未知量外,還出現(xiàn)其他未知量(如f(-x),等),必須根據(jù)已知等式,再構造其他等式組成方程組,利用解方程組法求出f(x)的表達式.

  【(三)、函數(shù)的值域與最值】

  1、函數(shù)的值域取決于定義域和對應法則,不論采用何種方法求函數(shù)值域都應先考慮其定義域,求函數(shù)值域常用方法如下:

  (1)直接法:亦稱觀察法,對于結構較為簡單的函數(shù),可由函數(shù)的解析式應用不等式的性質,直接觀察得出函數(shù)的值域.

  (2)換元法:運用代數(shù)式或三角換元將所給的復雜函數(shù)轉化成另一種簡單函數(shù)再求值域,若函數(shù)解析式中含有根式,當根式里一次式時用代數(shù)換元,當根式里是二次式時,用三角換元.

  (3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f-1(x)的定義域和值域間的關系,通過求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得.

  (4)配方法:對于二次函數(shù)或二次函數(shù)有關的函數(shù)的值域問題可考慮用配方法.

  (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過應注意條件“一正二定三相等”有時需用到平方等技巧.

  (6)判別式法:把y=f(x)變形為關于x的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式.

  (7)利用函數(shù)的單調性求值域:當能確定函數(shù)在其定義域上(或某個定義域的子集上)的單調性,可采用單調性法求出函數(shù)的值域.

  (8)數(shù)形結合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結合求函數(shù)的值域.

  2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系

  求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實上,如果在函數(shù)的值域中存在一個最小(大)數(shù),這個數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實質是相同的,只是提問的角度不同,因而答題的方式就有所相異.

  如函數(shù)的值域是(0,16],值是16,無最小值.再如函數(shù)的值域是(-∞,-2]∪[2,+∞),但此函數(shù)無值和最小值,只有在改變函數(shù)定義域后,如x>0時,函數(shù)的最小值為2.可見定義域對函數(shù)的值域或最值的影響.

  3、函數(shù)的最值在實際問題中的應用

  函數(shù)的`最值的應用主要體現(xiàn)在用函數(shù)知識求解實際問題上,從文字表述上常常表現(xiàn)為“工程造價最低”,“利潤”或“面積(體積)(最小)”等諸多現(xiàn)實問題上,求解時要特別關注實際意義對自變量的制約,以便能正確求得最值.

  【(四)、函數(shù)的奇偶性】

  1、函數(shù)的奇偶性的定義:對于函數(shù)f(x),如果對于函數(shù)定義域內的任意一個x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函數(shù)f(x)就叫做奇函數(shù)(或偶函數(shù)).

  正確理解奇函數(shù)和偶函數(shù)的定義,要注意兩點:(1)定義域在數(shù)軸上關于原點對稱是函數(shù)f(x)為奇函數(shù)或偶函數(shù)的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的恒等式.(奇偶性是函數(shù)定義域上的整體性質).

  2、奇偶函數(shù)的定義是判斷函數(shù)奇偶性的主要依據(jù)。為了便于判斷函數(shù)的奇偶性,有時需要將函數(shù)化簡或應用定義的等價形式:

  注意如下結論的運用:

  (1)不論f(x)是奇函數(shù)還是偶函數(shù),f(|x|)總是偶函數(shù);

  (2)f(x)、g(x)分別是定義域D1、D2上的奇函數(shù),那么在D1∩D2上,f(x)+g(x)是奇函數(shù),f(x)·g(x)是偶函數(shù),類似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

  (3)奇偶函數(shù)的復合函數(shù)的奇偶性通常是偶函數(shù);

  (4)奇函數(shù)的導函數(shù)是偶函數(shù),偶函數(shù)的導函數(shù)是奇函數(shù)。

  3、有關奇偶性的幾個性質及結論

  (1)一個函數(shù)為奇函數(shù)的充要條件是它的圖象關于原點對稱;一個函數(shù)為偶函數(shù)的充要條件是它的圖象關于y軸對稱.

  (2)如要函數(shù)的定義域關于原點對稱且函數(shù)值恒為零,那么它既是奇函數(shù)又是偶函數(shù).

  (3)若奇函數(shù)f(x)在x=0處有意義,則f(0)=0成立.

  (4)若f(x)是具有奇偶性的區(qū)間單調函數(shù),則奇(偶)函數(shù)在正負對稱區(qū)間上的單調性是相同(反)的。

  (5)若f(x)的定義域關于原點對稱,則F(x)=f(x)+f(-x)是偶函數(shù),G(x)=f(x)-f(-x)是奇函數(shù).

  (6)奇偶性的推廣

  函數(shù)y=f(x)對定義域內的任一x都有f(a+x)=f(a-x),則y=f(x)的圖象關于直線x=a對稱,即y=f(a+x)為偶函數(shù).函數(shù)y=f(x)對定義域內的任-x都有f(a+x)=-f(a-x),則y=f(x)的圖象關于點(a,0)成中心對稱圖形,即y=f(a+x)為奇函數(shù)。

  【(五)、函數(shù)的單調性】

  1、單調函數(shù)

  對于函數(shù)f(x)定義在某區(qū)間[a,b]上任意兩點x1,x2,當x1>x2時,都有不等式f(x1)>(或<)f(x2)成立,稱f(x)在[a,b]上單調遞增(或遞減);增函數(shù)或減函數(shù)統(tǒng)稱為單調函數(shù).

  對于函數(shù)單調性的定義的理解,要注意以下三點:

  (1)單調性是與“區(qū)間”緊密相關的概念.一個函數(shù)在不同的區(qū)間上可以有不同的單調性.

  (2)單調性是函數(shù)在某一區(qū)間上的“整體”性質,因此定義中的x1,x2具有任意性,不能用特殊值代替.

  (3)單調區(qū)間是定義域的子集,討論單調性必須在定義域范圍內.

  (4)注意定義的兩種等價形式:

  設x1、x2∈[a,b],那么:

  ①在[a、b]上是增函數(shù);

  在[a、b]上是減函數(shù).

 、谠赱a、b]上是增函數(shù).

  在[a、b]上是減函數(shù).

  需要指出的是:①的幾何意義是:增(減)函數(shù)圖象上任意兩點(x1,f(x1))、(x2,f(x2))連線的斜率都大于(或小于)零.

  (5)由于定義都是充要性命題,因此由f(x)是增(減)函數(shù),且(或x1>x2),這說明單調性使得自變量間的不等關系和函數(shù)值之間的不等關系可以“正逆互推”.

  5、復合函數(shù)y=f[g(x)]的單調性

  若u=g(x)在區(qū)間[a,b]上的單調性,與y=f(u)在[g(a),g(b)](或g(b),g(a))上的單調性相同,則復合函數(shù)y=f[g(x)]在[a,b]上單調遞增;否則,單調遞減.簡稱“同增、異減”.

  在研究函數(shù)的單調性時,常需要先將函數(shù)化簡,轉化為討論一些熟知函數(shù)的單調性。因此,掌握并熟記一次函數(shù)、二次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的單調性,將大大縮短我們的判斷過程.

  6、證明函數(shù)的單調性的方法

  (1)依定義進行證明.其步驟為:①任取x1、x2∈M且x1(或<)f(x2);③根據(jù)定義,得出結論.

  (2)設函數(shù)y=f(x)在某區(qū)間內可導.

  如果f′(x)>0,則f(x)為增函數(shù);如果f′(x)<0,則f(x)為減函數(shù).

  【(六)、函數(shù)的圖象】

  函數(shù)的圖象是函數(shù)的直觀體現(xiàn),應加強對作圖、識圖、用圖能力的培養(yǎng),培養(yǎng)用數(shù)形結合的思想方法解決問題的意識.

  求作圖象的函數(shù)表達式

  與f(x)的關系

  由f(x)的圖象需經過的變換

  y=f(x)±b(b>0)

  沿y軸向平移b個單位

  y=f(x±a)(a>0)

  沿x軸向平移a個單位

  y=-f(x)

  作關于x軸的對稱圖形

  y=f(|x|)

  右不動、左右關于y軸對稱

  y=|f(x)|

  上不動、下沿x軸翻折

  y=f-1(x)

  作關于直線y=x的對稱圖形

  y=f(ax)(a>0)

  橫坐標縮短到原來的,縱坐標不變

  y=af(x)

  縱坐標伸長到原來的|a|倍,橫坐標不變

  y=f(-x)

  作關于y軸對稱的圖形

  【例】定義在實數(shù)集上的函數(shù)f(x),對任意x,y∈R,有f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0.

 、偾笞C:f(0)=1;

 、谇笞C:y=f(x)是偶函數(shù);

  ③若存在常數(shù)c,使求證對任意x∈R,有f(x+c)=-f(x)成立;試問函數(shù)f(x)是不是周期函數(shù),如果是,找出它的一個周期;如果不是,請說明理由.

  思路分析:我們把沒有給出解析式的函數(shù)稱之為抽象函數(shù),解決這類問題一般采用賦值法.

  解答:①令x=y=0,則有2f(0)=2f2(0),因為f(0)≠0,所以f(0)=1.

 、诹顇=0,則有f(x)+f(-y)=2f(0)·f(y)=2f(y),所以f(-y)=f(y),這說明f(x)為偶函數(shù).

 、鄯謩e用(c>0)替換x、y,有f(x+c)+f(x)=

  所以,所以f(x+c)=-f(x).

  兩邊應用中的結論,得f(x+2c)=-f(x+c)=-[-f(x)]=f(x),

  所以f(x)是周期函數(shù),2c就是它的一個周期.

高一數(shù)學知識點總結5

  必修一

  一、集合

  一、集合有關概念1.集合的含義

  2.集合的中元素的三個特性:

  (1)元素的確定性如:世界上最高的山

  (2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

  3.集合的表示:{}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,

  北冰洋}

  (1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}(2)集合的表示方法:列舉法與描述法。注意:常用數(shù)集及其記法:

  非負整數(shù)集(即自然數(shù)集)記作:N

  正整數(shù)集N*或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R1)列舉法:{a,b,c}

  2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的

  方法。{xR|x-3>2},{x|x-3>2}

  3)語言描述法:例:{不是直角三角形的三角形}4)Venn圖:4、集合的分類:

  (1)有限集含有有限個元素的集合(2)無限集含有無限個元素的集合2

  (3)空集不含任何元素的集合例:{x|x=-5}

  二、集合間的基本關系1.“包含”關系子集

  注意:AB有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA2.“相等”關系:A=B(5≥5,且5≤5,則5=5)2

  實例:設A={x|x-1=0}B={-1,1}“元素相同則兩集合相等”即:①任何一個集合是它本身的子集。AA

  ②真子集:如果AB,且AB那就說集合A是集合B的真子集,記作AB(或BA)

  ③如果AB,BC,那么AC④如果AB同時BA那么A=B

  3.不含任何元素的集合叫做空集,記為Φ規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。nn-1

  有n個元素的集合,含有2個子集,2個真子集

  二、函數(shù)

  1、函數(shù)定義域、值域求法綜合

  2.、函數(shù)奇偶性與單調性問題的解題策略3、恒成立問題的求解策略4、反函數(shù)的幾種題型及方法

  5、二次函數(shù)根的問題一題多解&指數(shù)函數(shù)y=a^x

  a^a*a^b=a^a+b(a>0,a、b屬于Q)(a^a)^b=a^ab(a>0,a、b屬于Q)(ab)^a=a^a*b^a(a>0,a、b屬于Q)指數(shù)函數(shù)對稱規(guī)律:

  1、函數(shù)y=a^x與y=a^-x關于y軸對稱2、函數(shù)y=a^x與y=-a^x關于x軸對稱

  3、函數(shù)y=a^x與y=-a^-x關于坐標原點對稱&對數(shù)函數(shù)y=loga^x

  如果a0,且a1,M0,N0,那么:1loga(MMN)logaM+logaN;○

  2loga○logaM-logaN;n3○logaMNnlogaM(nR).注意:換底公式logcblogab(a0,且a1;c0,且c1;b0).冪函數(shù)y=x^a(a屬于R)logca1、冪函數(shù)定義:一般地,形如yx(aR)的函數(shù)稱為冪函數(shù),其中為常數(shù).

  2、冪函數(shù)性質歸納.

 。1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過點(1,1);(2)0時,冪函數(shù)的圖象通過原點,并且在區(qū)間[0,)上是增函數(shù).特別地,當1時,冪函數(shù)的圖象下凸;當01時,冪函數(shù)的圖象上凸;(3)0時,冪函數(shù)的圖象在區(qū)間(0,)上是減函數(shù).在第一象限內,當x從右邊趨向原點時,圖象在y軸右方無限地逼近y軸正半軸,當x趨于時,圖象在x軸上方無限地逼近x軸正半軸.

  方程的根與函數(shù)的零點

  1、函數(shù)零點的概念:對于函數(shù)yf(x)(xD),把使f(x)0成立的實數(shù)x叫做函數(shù)yf(x)(xD)的零點。

  2、函數(shù)零點的意義:函數(shù)yf(x)的零點就是方程f(x)0實數(shù)根,亦即函數(shù)yf(x)的圖象與x軸交點的橫坐標。

  即:方程f(x)0有實數(shù)根函數(shù)yf(x)的.圖象與x軸有交點函數(shù)yf(x)有零點.3、函數(shù)零點的求法:

  1(代數(shù)法)求方程f(x)0的實數(shù)根;○

  2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)yf(x)的圖○

  象聯(lián)系起來,并利用函數(shù)的性質找出零點.4、二次函數(shù)的零點:2bxc(a0).二次函數(shù)yax2(1)△>0,方程axbxc0有兩不等實根,二次函數(shù)的圖象與x軸有兩個交點,二次函數(shù)有兩個零點.2(2)△=0,方程axbxc0有兩相等實根,二次函數(shù)的圖象與x軸有一個交點,二次函數(shù)有一個二重零點或二階零點.2(3)△<0,方程axbxc0無實根,二次函數(shù)的圖象與x軸無交點,二次函數(shù)無零點.

  高一數(shù)學知識總結數(shù)性質三、平面向量

  向量:既有大小,又有方向的量.數(shù)量:只有大小,沒有方向的量.

  有向線段的三要素:起點、方向、長度.零向量:長度為0的向量.

  單位向量:長度等于1個單位的向量.相等向量:長度相等且方向相同的向量&向量的運算加法運算

  AB+BC=AC,這種計算法則叫做向量加法的三角形法則。

  已知兩個從同一點O出發(fā)的兩個向量OA、OB,以OA、OB為鄰邊作平行四邊形OACB,則以O為起點的對角線OC就是向量OA、OB的和,這種計算法則叫做向量加法的平行四邊形法則。對于零向量和任意向量a,有:0+a=a+0=a。|a+b|≤|a|+|b|。

  向量的加法滿足所有的加法運算定律。

  減法運算

  與a長度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

  數(shù)乘運算

  實數(shù)λ與向量a的積是一個向量,這種運算叫做向量的數(shù)乘,記作λa,|λa|=|λ||a|,當λ>0時,λa的方向和a的方向相同,當λ<0時,λa的方向和a的方向相反,當λ=0時,λa=0。設λ、μ是實數(shù),那么:(1)(λμ)a=λ(μa)(2)(λμ)a=λaμa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a)。

  向量的加法運算、減法運算、數(shù)乘運算統(tǒng)稱線性運算。

  向量的數(shù)量積

  已知兩個非零向量a、b,那么|a||b|cosθ叫做a與b的數(shù)量積或內積,記作a?b,θ是a與b的夾角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的數(shù)量積為0。a?b的幾何意義:數(shù)量積a?b等于a的長度|a|與b在a的方向上的投影|b|cosθ的乘積。兩個向量的數(shù)量積等于它們對應坐標的乘積的和。四、三角函數(shù)

  1、善于用“1“巧解題

  2、三角問題的非三角化解題策略3、三角函數(shù)有界性求最值解題方法4、三角函數(shù)向量綜合題例析5、三角函數(shù)中的數(shù)學思想方法

  15、正弦函數(shù)、余弦函數(shù)和正切函數(shù)的圖象與性質:ysinxytanxycosx函圖象

  定義域值域最值周期性奇偶性單調性

  RR

  1,1

  當x2kk當x2kk時,

  ymax時,21;當ymax1;當x2kx2kk時,ymin1.ky1.2min時,

  2

  1,1

  xxk,k

  2R

  既無最大值也無最小值

  2

  奇函數(shù)

  奇函數(shù)

  在

  偶函數(shù)

  對稱性

  必修四

  角的頂點與原點重合,角的始邊與x軸的非負半軸重合,終邊落在第幾象限,則稱為第幾象限角.k36090,k第一象限角的集合為k360,k第二象限角的集合為k36090k360180第三象限角的集合為k360180k360270,k第四象限角的集合為k360270k360360,k終邊在x軸上的角的集合為k180,k終邊在y軸上的角的集合為k18090,k終邊在坐標軸上的角的集合為k90,k3、與角終邊相同的角的集合為*k360,k4、已知是第幾象限角,確定n所在象限的方法:先把各象限均分n等份,再從x軸的正半

  2k,2k在2k,2kk上232k上是增函數(shù);在是增函數(shù);在2k,2k2k,2kk上是減函數(shù).22k上是減函數(shù).對稱中心k,0中心稱k對對稱軸xkkk,0k

  x2k對稱軸2k

  ,k

  22k上是增函數(shù).

  k,0k對稱中心無對稱軸2在kn軸的上方起,依次將各區(qū)域標上一、二、三、四,則原來是第幾象限對應的標號即為區(qū)域.

  5、長度等于半徑長的弧所對的圓心角叫做1弧度.口訣:奇變偶不變,符號看象限.

  公式一:

  設α為任意角,終邊相同的角的同一三角函數(shù)的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:

  設α為任意角,πα的三角函數(shù)值與α的三角函數(shù)值之間的關系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα

  公式三:

  任意角α與-α的三角函數(shù)值之間的關系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα

  公式四:

  利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα

  公式五:

  利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα

  公式六:

  π/2±α及3π/2±α與α的三角函數(shù)值之間的關系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanα

  sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα

  sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanα

  sin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα

  (以上k∈Z)

  其他三角函數(shù)知識:同角三角函數(shù)基本關系

  ⒈同角三角函數(shù)的基本關系式倒數(shù)關系:

  tanαcotα=1sinαcscα=1cosαsecα=1商的關系:

  sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方關系:

  sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)兩角和差公式

 、矁山呛团c差的三角函數(shù)公式

  sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ

  tanα+tanβtan(α+β)=1-tanαtanβ

  tanα-tanβtan(α-β)=1+tanαtanβ

  n終邊所落在的

  倍角公式

  ⒊二倍角的正弦、余弦和正切公式(升冪縮角公式)sin2α=2sinαcosα

  cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)2tanαtan2α=1-tan^2(α)半角公式

 、窗虢堑恼摇⒂嘞液驼泄剑ń祪鐢U角公式)1-cosαsin^2(α/2)=21+cosαcos^2(α/2)=21-cosαtan^2(α/2)=1+cosα萬能公式⒌萬能公式

  2tan(α/2)sinα=1+tan^2(α/2)

  1-tan^2(α/2)cosα=1+tan^2(α/2)

  2tan(α/2)tanα=1-tan^2(α/2)和差化積公式

 、啡呛瘮(shù)的和差化積公式

  α+βα-βsinα+sinβ=2sin----cos---22

  α+βα-βsinα-sinβ=2cos----sin----22

  α+βα-βcosα+cosβ=2cos-----cos-----22

  α+βα-βcosα-cosβ=-2sin-----sin-----22積化和差公式

 、溉呛瘮(shù)的積化和差公式

  sinαcosβ=0.5[sin(α+β)+sin(α-β)]cosαsinβ=0.5[sin(α+β)-sin(α-β)]cosαcosβ=0.5[cos(α+β)+cos(α-β)]sinαsinβ=-0.5[cos(α+β)-cos(α-β)]

高一數(shù)學知識點總結6

  1.對于集合,一定要抓住集合的代表元素,及元素的“確定性、互異性、無序性”。

  中元素各表示什么?

  注重借助于數(shù)軸和文氏圖解集合問題。

  空集是一切集合的子集,是一切非空集合的真子集。

  3.注意下列性質:

  (3)德摩根定律:

  4.你會用補集思想解決問題嗎?(排除法、間接法)

  的取值范圍。

  6.命題的四種形式及其相互關系是什么?

  (互為逆否關系的命題是等價命題。)

  原命題與逆否命題同真、同假;逆命題與否命題同真同假。

  7.對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應元素的性,哪幾種對應能構成映射?

  (一對一,多對一,允許B中有元素無原象。)

  8.函數(shù)的三要素是什么?如何比較兩個函數(shù)是否相同?

  (定義域、對應法則、值域)

  9.求函數(shù)的定義域有哪些常見類型?

  10.如何求復合函數(shù)的定義域?

  義域是_____________。

  11.求一個函數(shù)的解析式或一個函數(shù)的反函數(shù)時,注明函數(shù)的定義域了嗎?

  12.反函數(shù)存在的條件是什么?

  (一一對應函數(shù))

  求反函數(shù)的步驟掌握了嗎?

  (①反解x;②互換x、y;③注明定義域)

  13.反函數(shù)的性質有哪些?

  ①互為反函數(shù)的圖象關于直線y=x對稱;

 、诒4媪嗽瓉砗瘮(shù)的單調性、奇函數(shù)性;

  14.如何用定義證明函數(shù)的單調性?

  (取值、作差、判正負)

  如何判斷復合函數(shù)的單調性?

  ∴……)

  15.如何利用導數(shù)判斷函數(shù)的單調性?

  值是()

  A.0B.1C.2D.3

  ∴a的值為3)

  16.函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?

  (f(x)定義域關于原點對稱)

  注意如下結論:

  (1)在公共定義域內:兩個奇函數(shù)的乘積是偶函數(shù);兩個偶函數(shù)的乘積是偶函數(shù);一個偶函數(shù)與奇函數(shù)的乘積是奇函數(shù)。

  17.你熟悉周期函數(shù)的定義嗎?

  函數(shù),T是一個周期。)

  如:

  18.你掌握常用的圖象變換了嗎?

  注意如下“翻折”變換:

  19.你熟練掌握常用函數(shù)的圖象和性質了嗎?

  的雙曲線。

  應用:①“三個二次”(二次函數(shù)、二次方程、二次不等式)的關系——二次方程

 、谇箝]區(qū)間[m,n]上的最值。

 、矍髤^(qū)間定(動),對稱軸動(定)的最值問題。

 、芤辉畏匠谈腵分布問題。

  由圖象記性質!(注意底數(shù)的限定!)

  利用它的單調性求最值與利用均值不等式求最值的區(qū)別是什么?

  20.你在基本運算上常出現(xiàn)錯誤嗎?

  21.如何解抽象函數(shù)問題?

  (賦值法、結構變換法)

  22.掌握求函數(shù)值域的常用方法了嗎?

  (二次函數(shù)法(配方法),反函數(shù)法,換元法,均值定理法,判別式法,利用函數(shù)單調性法,導數(shù)法等。)

  如求下列函數(shù)的最值:

  23.你記得弧度的定義嗎?能寫出圓心角為α,半徑為R的弧長公式和扇形面積公式嗎?

  24.熟記三角函數(shù)的定義,單位圓中三角函數(shù)線的定義

  25.你能迅速畫出正弦、余弦、正切函數(shù)的圖象嗎?并由圖象寫出單調區(qū)間、對稱點、對稱軸嗎?

  (x,y)作圖象。

  27.在三角函數(shù)中求一個角時要注意兩個方面——先求出某一個三角函數(shù)值,再判定角的范圍。

  28.在解含有正、余弦函數(shù)的問題時,你注意(到)運用函數(shù)的有界性了嗎?

  29.熟練掌握三角函數(shù)圖象變換了嗎?

  (平移變換、伸縮變換)

  平移公式:

  圖象?

  30.熟練掌握同角三角函數(shù)關系和誘導公式了嗎?

  “奇”、“偶”指k取奇、偶數(shù)。

  A.正值或負值B.負值C.非負值D.正值

  31.熟練掌握兩角和、差、倍、降冪公式及其逆向應用了嗎?

  理解公式之間的聯(lián)系:

  應用以上公式對三角函數(shù)式化簡。(化簡要求:項數(shù)最少、函數(shù)種類最少,分母中不含三角函數(shù),能求值,盡可能求值。)

  具體方法:

  (2)名的變換:化弦或化切

  (3)次數(shù)的變換:升、降冪公式

  (4)形的變換:統(tǒng)一函數(shù)形式,注意運用代數(shù)運算。

  32.正、余弦定理的各種表達形式你還記得嗎?如何實現(xiàn)邊、角轉化,而解斜三角形?

  (應用:已知兩邊一夾角求第三邊;已知三邊求角。)

  33.用反三角函數(shù)表示角時要注意角的范圍。

  34.不等式的性質有哪些?

  答案:C

  35.利用均值不等式:

  值?(一正、二定、三相等)

  注意如下結論:

  36.不等式證明的基本方法都掌握了嗎?

  (比較法、分析法、綜合法、數(shù)學歸納法等)

  并注意簡單放縮法的應用。

  (移項通分,分子分母因式分解,x的系數(shù)變?yōu)?,穿軸法解得結果。)

  38.用“穿軸法”解高次不等式——“奇穿,偶切”,從根的右上方開始

  39.解含有參數(shù)的不等式要注意對字母參數(shù)的討論

  40.對含有兩個絕對值的不等式如何去解?

  (找零點,分段討論,去掉絕對值符號,最后取各段的并集。)

  證明:

  (按不等號方向放縮)

  42.不等式恒成立問題,常用的處理方式是什么?(可轉化為最值問題,或“△”問題)

  43.等差數(shù)列的定義與性質

  0的二次函數(shù))

  項,即:

  44.等比數(shù)列的定義與性質

  46.你熟悉求數(shù)列通項公式的常用方法嗎?

  例如:(1)求差(商)法

  解:

  [練習]

  (2)疊乘法

  解:

  (3)等差型遞推公式

  [練習]

  (4)等比型遞推公式

  [練習]

  (5)倒數(shù)法

  47.你熟悉求數(shù)列前n項和的常用方法嗎?

  例如:(1)裂項法:把數(shù)列各項拆成兩項或多項之和,使之出現(xiàn)成對互為相反數(shù)的項。

  解:

  [練習]

  (2)錯位相減法:

  (3)倒序相加法:把數(shù)列的各項順序倒寫,再與原來順序的數(shù)列相加。

  [練習]

  48.你知道儲蓄、貸款問題嗎?

  △零存整取儲蓄(單利)本利和計算模型:

  若每期存入本金p元,每期利率為r,n期后,本利和為:

  △若按復利,如貸款問題——按揭貸款的每期還款計算模型(按揭貸款——分期等額歸還本息的借款種類)

  若貸款(向銀行借款)p元,采用分期等額還款方式,從借款日算起,一期(如一年)后為第一次還款日,如此下去,第n次還清。如果每期利率為r(按復利),那么每期應還x元,滿足

  p——貸款數(shù),r——利率,n——還款期數(shù)

  49.解排列、組合問題的依據(jù)是:分類相加,分步相乘,有序排列,無序組合。

  (2)排列:從n個不同元素中,任取m(m≤n)個元素,按照一定的順序排成一

  (3)組合:從n個不同元素中任取m(m≤n)個元素并組成一組,叫做從n個不

  50.解排列與組合問題的規(guī)律是:

  相鄰問題_法;相間隔問題插空法;定位問題優(yōu)先法;多元問題分類法;至多至少問題間接法;相同元素分組可采用隔板法,數(shù)量不大時可以逐一排出結果。

  如:學號為1,2,3,4的四名學生的考試成績

  則這四位同學考試成績的所有可能情況是()

  A.24B.15C.12D.10

  解析:可分成兩類:

  (2)中間兩個分數(shù)相等

  相同兩數(shù)分別取90,91,92,對應的排列可以數(shù)出來,分別有3,4,3種,∴有10種。

  ∴共有5+10=15(種)情況

  51.二項式定理

  性質:

  (3)最值:n為偶數(shù)時,n+1為奇數(shù),中間一項的二項式系數(shù)且為第

  表示)

  52.你對隨機事件之間的關系熟悉嗎?

  的和(并)。

  (5)互斥事件(互不相容事件):“A與B不能同時發(fā)生”叫做A、B互斥。

  (6)對立事件(互逆事件):

  (7)獨立事件:A發(fā)生與否對B發(fā)生的概率沒有影響,這樣的兩個事件叫做相互獨立事件。

  53.對某一事件概率的求法:

  分清所求的是:(1)等可能事件的概率(常采用排列組合的方法,即

  (5)如果在一次試驗中A發(fā)生的概率是p,那么在n次獨立重復試驗中A恰好發(fā)生

  如:設10件產品中有4件次品,6件正品,求下列事件的概率。

  (1)從中任取2件都是次品;

  (2)從中任取5件恰有2件次品;

  (3)從中有放回地任取3件至少有2件次品;

  解析:有放回地抽取3次(每次抽1件),∴n=103

  而至少有2件次品為“恰有2次品”和“三件都是次品”

  (4)從中依次取5件恰有2件次品。

  解析:∵一件一件抽取(有順序)

  分清(1)、(2)是組合問題,(3)是可重復排列問題,(4)是無重復排列問題。

  54.抽樣方法主要有:簡單隨機抽樣(抽簽法、隨機數(shù)表法)常常用于總體個數(shù)較少時,它的特征是從總體中逐個抽取;系統(tǒng)抽樣,常用于總體個數(shù)較多時,它的主要特征是均衡成若干部分,每部分只取一個;分層抽樣,主要特征是分層按比例抽樣,主要用于總體中有明顯差異,它們的共同特征是每個個體被抽到的概率相等,體現(xiàn)了抽樣的客觀性和平等性。

  55.對總體分布的估計——用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估計總體的期望和方差。

  要熟悉樣本頻率直方圖的作法:

  (2)決定組距和組數(shù);

  (3)決定分點;

  (4)列頻率分布表;

  (5)畫頻率直方圖。

  如:從10名_與5名男生中選6名學生參加比賽,如果按性別分層隨機抽樣,則組成此參賽隊的概率為____________。

  56.你對向量的有關概念清楚嗎?

  (1)向量——既有大小又有方向的量。

  在此規(guī)定下向量可以在平面(或空間)平行移動而不改變。

  (6)并線向量(平行向量)——方向相同或相反的向量。

  規(guī)定零向量與任意向量平行。

  (7)向量的加、減法如圖:

  (8)平面向量基本定理(向量的分解定理)

  的一組基底。

  (9)向量的坐標表示

  表示。

  57.平面向量的數(shù)量積

  數(shù)量積的幾何意義:

  (2)數(shù)量積的運算法則

  [練習]

  答案:

  答案:2

  答案:

  58.線段的定比分點

  ※.你能分清三角形的重心、垂心、外心、內心及其性質嗎?

  59.立體幾何中平行、垂直關系證明的思路清楚嗎?

  平行垂直的證明主要利用線面關系的轉化:

  線面平行的判定:

  線面平行的性質:

  三垂線定理(及逆定理):

  線面垂直:

  面面垂直:

  60.三類角的定義及求法

  (1)異面直線所成的角θ,0°<θ≤90°

  (2)直線與平面所成的角θ,0°≤θ≤90°

  (三垂線定理法:A∈α作或證AB⊥β于B,作BO⊥棱于O,連AO,則AO⊥棱l,∴∠AOB為所求。)

  三類角的求法:

 、僬页龌蜃鞒鲇嘘P的角。

 、谧C明其符合定義,并指出所求作的角。

 、塾嬎愦笮(解直角三角形,或用余弦定理)。

  [練習]

  (1)如圖,OA為α的斜線OB為其在α_影,OC為α內過O點任一直線。

  (2)如圖,正四棱柱ABCD—A1B1C1D1中對角線BD1=8,BD1與側面B1BCC1所成的為30°。

 、偾驜D1和底面ABCD所成的角;

 、谇螽惷嬷本BD1和AD所成的角;

  ③求二面角C1—BD1—B1的大小。

  (3)如圖ABCD為菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB與面PCD所成的銳二面角的大小。

  (∵AB∥DC,P為面PAB與面PCD的公共點,作PF∥AB,則PF為面PCD與面PAB的交線……)

  61.空間有幾種距離?如何求距離?

  點與點,點與線,點與面,線與線,線與面,面與面間距離。

  將空間距離轉化為兩點的距離,構造三角形,解三角形求線段的長(如:三垂線定理法,或者用等積轉化法)。

  如:正方形ABCD—A1B1C1D1中,棱長為a,則:

  (1)點C到面AB1C1的距離為___________;

  (2)點B到面ACB1的距離為____________;

  (3)直線A1D1到面AB1C1的距離為____________;

  (4)面AB1C與面A1DC1的距離為____________;

  (5)點B到直線A1C1的距離為_____________。

  62.你是否準確理解正棱柱、正棱錐的定義并掌握它們的性質?

  正棱柱——底面為正多邊形的直棱柱

  正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。

  正棱錐的計算集中在四個直角三角形中:

  它們各包含哪些元素?

  63.球有哪些性質?

  (2)球面上兩點的距離是經過這兩點的大圓的劣弧長。為此,要找球心角!

  (3)如圖,θ為緯度角,它是線面成角;α為經度角,它是面面成角。

  (5)球內接長方體的對角線是球的直徑。正四面體的外接球半徑R與內切球半徑r之比為R:r=3:1。

  積為()

  答案:A

  64.熟記下列公式了嗎?

  (2)直線方程:

  65.如何判斷兩直線平行、垂直?

  66.怎樣判斷直線l與圓C的位置關系?

  圓心到直線的距離與圓的半徑比較。

  直線與圓相交時,注意利用圓的“垂徑定理”。

  67.怎樣判斷直線與圓錐曲線的位置?

  68.分清圓錐曲線的定義

  70.在圓錐曲線與直線聯(lián)立求解時,消元后得到的方程,要注意其二次項系數(shù)是否為零?△≥0的限制。(求交點,弦長,中點,斜率,對稱存在性問題都在△≥0下進行。)

  71.會用定義求圓錐曲線的焦半徑嗎?

  如:

  通徑是拋物線的所有焦點弦中最短者;以焦點弦為直徑的圓與準線相切。

  72.有關中點弦問題可考慮用“代點法”。

  答案:

  73.如何求解“對稱”問題?

  (1)證明曲線C:F(x,y)=0關于點M(a,b)成中心對稱,設A(x,y)為曲線C上任意一點,設A'(x',y')為A關于點M的對稱點。

  75.求軌跡方程的常用方法有哪些?注意討論范圍。

  (直接法、定義法、轉移法、參數(shù)法)

  76.對線性規(guī)劃問題:作出可行域,作出以目標函數(shù)為截距的直線,在可行域內平移直線,求出目標函數(shù)的最值。

高一數(shù)學知識點總結7

  一.知識歸納:

  1.集合的有關概念。

  1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素

  注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。

  ②集合中的元素具有確定性(a?a和a?a,二者必居其一)、互異性(若a?a,b?a,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。

 、奂暇哂袃煞矫娴囊饬x,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件

  2)集合的表示方法:常用的有列舉法、描述法和圖文法

  3)集合的`分類:有限集,無限集,空集。

  4)常用數(shù)集:n,z,q,r,n*

  2.子集、交集、并集、補集、空集、全集等概念。

  1)子集:若對x∈a都有x∈b,則ab(或ab);

  2)真子集:ab且存在x0∈b但x0a;記為ab(或,且)

  3)交集:a∩b={x|x∈a且x∈b}

  4)并集:a∪b={x|x∈a或x∈b}

  5)補集:cua={x|xa但x∈u}

  注意:①?a,若a≠?,則?a;

 、谌簦瑒t;

 、廴羟,則a=b(等集)

  3.弄清集合與元素、集合與集合的關系,掌握有關的術語和符號,特別要注意以下的符號:(1)與、?的區(qū)別;(2)與的區(qū)別;(3)與的區(qū)別。

  4.有關子集的幾個等價關系

 、賏∩b=aab;②a∪b=bab;③abcuacub;

  ④a∩cub=空集cuab;⑤cua∪b=iab。

  5.交、并集運算的性質

 、賏∩a=a,a∩?=?,a∩b=b∩a;②a∪a=a,a∪?=a,a∪b=b∪a;

 、踓u(a∪b)=cua∩cub,cu(a∩b)=cua∪cub;

  6.有限子集的個數(shù):設集合a的元素個數(shù)是n,則a有2n個子集,2n-1個非空子集,2n-2個非空真子集。

  二.例題講解:

  【例1】已知集合m={x|x=m+,m∈z},n={x|x=,n∈z},p={x|x=,p∈z},則m,n,p滿足關系

  a)m=npb)mn=pc)mnpd)npm

  分析一:從判斷元素的共性與區(qū)別入手。

  解答一:對于集合m:{x|x=,m∈z};對于集合n:{x|x=,n∈z}

  對于集合p:{x|x=,p∈z},由于3(n-1)+1和3p+1都表示被3除余1的數(shù),而6m+1表示被6除余1的數(shù),所以mn=p,故選b。

  分析二:簡單列舉集合中的元素。

  解答二:m={…,…},n={…,…},p={…,…},這時不要急于判斷三個集合間的關系,應分析各集合中不同的元素。

  =∈n,∈n,∴mn,又=m,∴mn,=p,∴np又∈n,∴pn,故p=n,所以選b。

  點評:由于思路二只是停留在最初的歸納假設,沒有從理論上解決問題,因此提倡思路一,但思路二易人手。

  變式:設集合,則(b)

  a.m=nb.mnc.nmd.

  解:

  當時,2k+1是奇數(shù),k+2是整數(shù),選b

  【例2】定義集合a*b={x|x∈a且xb},若a={1,3,5,7},b={2,3,5},則a*b的子集個數(shù)為

  a)1b)2c)3d)4

  分析:確定集合a*b子集的個數(shù),首先要確定元素的個數(shù),然后再利用公式:集合a={a1,a2,…,an}有子集2n個來求解。

  解答:∵a*b={x|x∈a且xb},∴a*b={1,7},有兩個元素,故a*b的子集共有22個。選d。

  變式1:已知非空集合m{1,2,3,4,5},且若a∈m,則6?a∈m,那么集合m的個數(shù)為

  a)5個b)6個c)7個d)8個

  變式2:已知{a,b}a{a,b,c,d,e},求集合a.

  解:由已知,集合中必須含有元素a,b.

  集合a可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.

  評析本題集合a的個數(shù)實為集合{c,d,e}的真子集的個數(shù),所以共有個.

  【例3】已知集合a={x|x2+px+q=0},b={x|x2?4x+r=0},且a∩b={1},a∪b={?2,1,3},求實數(shù)p,q,r的值。

  解答:∵a∩b={1}∴1∈b∴12?4×1+r=0,r=3.

  ∴b={x|x2?4x+r=0}={1,3},∵a∪b={?2,1,3},?2b,∴?2∈a

  ∵a∩b={1}∴1∈a∴方程x2+px+q=0的兩根為-2和1,∴∴

  變式:已知集合a={x|x2+bx+c=0},b={x|x2+mx+6=0},且a∩b={2},a∪b=b,求實數(shù)b,c,m的值.

  解:∵a∩b={2}∴1∈b∴22+m?2+6=0,m=-5

  ∴b={x|x2-5x+6=0}={2,3}∵a∪b=b∴

  又∵a∩b={2}∴a={2}∴b=-(2+2)=4,c=2×2=4

  ∴b=-4,c=4,m=-5

  【例4】已知集合a={x|(x-1)(x+1)(x+2)>0},集合b滿足:a∪b={x|x>-2},且a∩b={x|1

  分析:先化簡集合a,然后由a∪b和a∩b分別確定數(shù)軸上哪些元素屬于b,哪些元素不屬于b。

  解答:a={x|-21}。由a∩b={x|1-2}可知[-1,1]b,而(-∞,-2)∩b=ф。

  綜合以上各式有b={x|-1≤x≤5}

  變式1:若a={x|x3+2x2-8x>0},b={x|x2+ax+b≤0},已知a∪b={x|x>-4},a∩b=φ,求a,b。(答案:a=-2,b=0)

  點評:在解有關不等式解集一類集合問題,應注意用數(shù)形結合的方法,作出數(shù)軸來解之。

  變式2:設m={x|x2-2x-3=0},n={x|ax-1=0},若m∩n=n,求所有滿足條件的a的集合。

  解答:m={-1,3},∵m∩n=n,∴nm

 、佼敃r,ax-1=0無解,∴a=0②

  綜①②得:所求集合為{-1,0,}

  【例5】已知集合,函數(shù)y=log2(ax2-2x+2)的定義域為q,若p∩q≠φ,求實數(shù)a的取值范圍。

  分析:先將原問題轉化為不等式ax2-2x+2>0在有解,再利用參數(shù)分離求解。

  解答:(1)若,在內有有解

  令當時,所以a>-4,所以a的取值范圍是

  變式:若關于x的方程有實根,求實數(shù)a的取值范圍。

  解答:

  點評:解決含參數(shù)問題的題目,一般要進行分類討論,但并不是所有的問題都要討論,怎樣可以避免討論是我們思考此類問題的關鍵。

  三.隨堂演練

  選擇題

  1.下列八個關系式①{0}=②=0③{}④{}⑤{0}

  ⑥0⑦{0}⑧{}其中正確的個數(shù)

  (a)4(b)5(c)6(d)7

  2.集合{1,2,3}的真子集共有

  (a)5個(b)6個(c)7個(d)8個

  3.集合a={x}b={}c={}又則有

  (a)(a+b)a(b)(a+b)b(c)(a+b)c(d)(a+b)a、b、c任一個

  4.設a、b是全集u的兩個子集,且ab,則下列式子成立的是

  (a)cuacub(b)cuacub=u

  (c)acub=(d)cuab=

  5.已知集合a={},b={}則a=

  (a)r(b){}

  (c){}(d){}

  6.下列語句:(1)0與{0}表示同一個集合;(2)由1,2,3組成的集合可表示為

  {1,2,3}或{3,2,1};(3)方程(x-1)2(x-2)2=0的所有解的集合可表示為{1,1,2};(4)集合{}是有限集,正確的是

  (c)只有(2)(d)以上語句都不對

  7.設s、t是兩個非空集合,且st,ts,令x=s那么s∪x=

  (a)x(b)t(c)φ(d)s

  8設一元二次方程ax2+bx+c=0(a<0)的根的判別式,則不等式ax2+bx+c0的解集為

  (a)r(b)(c){}(d){}

  填空題

  9.在直角坐標系中,坐標軸上的點的集合可表示為

  10.若a={1,4,x},b={1,x2}且ab=b,則x=

  11.若a={x}b={x},全集u=r,則a=

  12.若方程8x2+(k+1)x+k-7=0有兩個負根,則k的取值范圍是

  13設集合a={},b={x},且ab,則實數(shù)k的取值范圍是。

  14.設全集u={x為小于20的非負奇數(shù)},若a(cub)={3,7,15},(cua)b={13,17,19},又(cua)(cub)=,則ab=

  解答題

  15(8分)已知集合a={a2,a+1,-3},b={a-3,2a-1,a2+1},若ab={-3},求實數(shù)a。

  16(12分)設a=,b=,其中xr,如果ab=b,求實數(shù)a的取值范圍。

  四.習題答案

  選擇題

  12345678

  ccbcbcdd

  填空題

  9.{(x,y)}10.0,11.{x,或x3}12.{}13.{}14.{1,5,9,11}

  解答題

  15.a=-1

  16.提示:a={0,-4},又ab=b,所以ba

  (ⅰ)b=時,4(a+1)2-4(a2-1)<0,得a<-1

  (ⅱ)b={0}或b={-4}時,0得a=-1

  (ⅲ)b={0,-4},解得a=1

  綜上所述實數(shù)a=1或a-1

高一數(shù)學知識點總結8

  圓的方程定義:

  圓的標準方程(x-a)2+(y-b)2=r2中,有三個參數(shù)a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。

  直線和圓的位置關系:

  1.直線和圓位置關系的判定方法一是方程的觀點,即把圓的方程和直線的方程聯(lián)立成方程組,利用判別式Δ來討論位置關系.

 、佴>0,直線和圓相交.②Δ=0,直線和圓相切.③Δ<0,直線和圓相離.

  方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較.

 、賒R,直線和圓相離.

  2.直線和圓相切,這類問題主要是求圓的切線方程.求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況.

  3.直線和圓相交,這類問題主要是求弦長以及弦的中點問題.

  切線的性質

  ⑴圓心到切線的距離等于圓的半徑;

 、七^切點的半徑垂直于切線;

  ⑶經過圓心,與切線垂直的直線必經過切點;

 、冉涍^切點,與切線垂直的'直線必經過圓心;

  當一條直線滿足

  (1)過圓心;

  (2)過切點;

  (3)垂直于切線三個性質中的兩個時,第三個性質也滿足.

  切線的判定定理

  經過半徑的外端點并且垂直于這條半徑的直線是圓的切線.

  切線長定理

  從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角.

  圓錐曲線性質:

  一、圓錐曲線的定義

  1.橢圓:到兩個定點的距離之和等于定長(定長大于兩個定點間的距離)的動點的軌跡叫做橢圓.

  2.雙曲線:到兩個定點的距離的差的絕對值為定值(定值小于兩個定點的距離)的動點軌跡叫做雙曲線.即.

  3.圓錐曲線的統(tǒng)一定義:到定點的距離與到定直線的距離的比e是常數(shù)的點的軌跡叫做圓錐曲線.當01時為雙曲線.

  二、圓錐曲線的方程

  1.橢圓:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2)

  2.雙曲線:-=1(a>0,b>0)或-=1(a>0,b>0)(其中,c2=a2+b2)

  3.拋物線:y2=±2px(p>0),x2=±2py(p>0)

  三、圓錐曲線的性質

  1.橢圓:+=1(a>b>0)

  (1)范圍:|x|≤a,|y|≤b(2)頂點:(±a,0),(0,±b)(3)焦點:(±c,0)(4)離心率:e=∈(0,1)(5)準線:x=±

  2.雙曲線:-=1(a>0,b>0)(1)范圍:|x|≥a,y∈R(2)頂點:(±a,0)(3)焦點:(±c,0)(4)離心率:e=∈(1,+∞)(5)準線:x=±(6)漸近線:y=±x

  3.拋物線:y2=2px(p>0)(1)范圍:x≥0,y∈R(2)頂點:(0,0)(3)焦點:(,0)(4)離心率:e=1(5)準線:x=-

高一數(shù)學知識點總結9

  集合間的基本關系

  1!鞍标P系—子集

  注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

  2!跋嗟取标P系:A=B(5≥5,且5≤5,則5=5)

  實例:設A={x|x2—1=0}B={—1,1}“元素相同則兩集合相等”

  即:①任何一個集合是它本身的子集。AA

  ②真子集:如果AB,且AB那就說集合A是集合B的.真子集,記作AB(或BA)

 、廴绻鸄B,BC,那么AC

  ④如果AB同時BA那么A=B

  3。不含任何元素的集合叫做空集,記為Φ

  規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

  有n個元素的集合,含有2n個子集,2n—1個真子集

  集合的運算

  運算類型交集并集補集

  定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集。記作AB(讀作‘A交B’),即AB={x|xA,且xB}。

  由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。記作:AB(讀作‘A并B’),即AB={x|xA,或xB})。

  設S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

高一數(shù)學知識點總結10

  一、平面解析幾何的基本思想和主要問題

  平面解析幾何是用代數(shù)的方法研究幾何問題的一門數(shù)學學科,其基本思想就是用代數(shù)的方法研究幾何問題。例如,用直線的方程可以研究直線的性質,用兩條直線的方程可以研究這兩條直線的位置關系等。

  平面解析幾何研究的問題主要有兩類:一是根據(jù)已知條件,求出表示平面曲線的方程;二是通過方程,研究平面曲線的性質。

  二、直線坐標系和直角坐標系

  直線坐標系,也就是數(shù)軸,它有三個要素:原點、度量單位和方向。如果讓一個實數(shù)與數(shù)軸上坐標為的點對應,那么就可以在實數(shù)集與數(shù)軸上的點集之間建立一一對應關系。

  點與實數(shù)對應,則稱點的坐標為,記作,如點坐標為,則記作;點坐標為,則記為。

  直角坐標系是由兩條互相垂直且有公共原點的數(shù)軸組成,兩條數(shù)軸的度量單位一般相同,但有時也可以不同,兩個數(shù)軸的交點是直角坐標系的'原點。在平面直角坐標系中,有序實數(shù)對構成的集合與坐標平面內的點集具有一一對應關系。

  一個點的坐標是這樣求得的,由點向軸及軸作垂線,在兩坐標軸上形成正投影,在軸上的正投影所對應的值為點的橫坐標,在軸上的正投影所對應的值為點的縱坐標。

  在學習這兩種坐標系時,要注意用類比的方法。例如,平面直角坐標系是二維坐標系,它有兩個坐標軸,每個點的坐標需用兩個實數(shù)(即一對有序實數(shù))來表示,而直線坐標系是一維坐標系,它只有一個坐標軸,每個點的坐標只需用一個實數(shù)來表示。

  三、向量的有關概念和公式

  如果數(shù)軸上的任意一點沿著軸的正向或負向移動到另一個點,則說點在軸上作了一次位移。位移是一個既有大小又有方向的量,通常叫做位移向量,簡稱向量,記作。如果點移動的方向與數(shù)軸的正方向相同,則向量為正,否則為負。線段的長叫做向量的長度,記作。向量的長度連同表示其方向的正負號叫做向量的坐標(或數(shù)量),用表示。這里同學們要分清,,三個符號的含義。

  對于數(shù)軸上任意三點,都有成立。該等式左邊表示在數(shù)軸上點向點作一次位移,等式右邊表示點先向點作一次位移,再由點向點作一次位移,它們的最終結果是相同的。

  向量的坐標公式(或數(shù)量公式),它表示向量的數(shù)量等于終點的坐標減去起點的坐標,這個公式非常重要。

  有相等坐標的兩個向量相等,看做同一個向量;反之,兩個相等向量坐標必相等。

  注意:①相等的所有向量看做一個整體,作為同一向量,都等于以原點為起點,坐標與這所有向量相等的那個向量。②向量與數(shù)軸上的實數(shù)(或點)是一一對應的,零向量即原點。

  四、兩點的距離公式和中點公式

  1。對于數(shù)軸上的兩點,設它們的坐標分別為,,則的距離為,的中點的坐標為。

  由于表示數(shù)軸上兩點與的距離,所以在解一些簡單的含絕對值的方程或不等式時,常借助于數(shù)形結合思想,將問題轉化為數(shù)軸上的距離問題加以解決。例如,解方程時,可以將問題看作在數(shù)軸上求一點,使它到,的距離之和等于。

  2。對于直角坐標系中的兩點,設它們的坐標分別為,,則兩點的距離為,的中點的坐標滿足。

  兩點的距離公式和中點公式是解析幾何中最基本、最常用的公式之一,要求同學們能熟練掌握并能靈活運用。

  五、坐標法

  坐標法是數(shù)學中一種重要的數(shù)學思想方法,它是借助于坐標系來研究幾何圖形的一種方法,是數(shù)形結合的典范。這種方法是在平面上建立直角坐標系,用坐標表示點,把曲線看成滿足某種條件的點的集合或軌跡,用曲線上點的坐標所滿足的方程表示曲線,通過研究方程,間接地來研究曲線的性質。

高一數(shù)學知識點總結11

  集合與元素

  一個東西是集合還是元素并不是絕對的,很多情況下是相對的,集合是由元素組成的集合,元素是組成集合的元素。

  例如:你所在的班級是一個集合,是由幾十個和你同齡的.同學組成的集合,你相對于這個班級集合來說,是它的一個元素;

  而整個學校又是由許許多多個班級組成的集合,你所在的班級只是其中的一分子,是一個元素。

  班級相對于你是集合,相對于學校是元素,參照物不同,得到的結論也不同,可見,是集合還是元素,并不是絕對的。

  .解集合問題的關鍵

  解集合問題的關鍵:弄清集合是由哪些元素所構成的,也就是將抽象問題具體化、形象化,將特征性質描述法表示的集合用列舉法來表示,或用韋恩圖來表示抽象的集合,或用圖形來表示集合;比如用數(shù)軸來表示集合,或是集合的元素為有序實數(shù)對時,可用平面直角坐標系中的圖形表示相關的集合等。

高一數(shù)學知識點總結12

  【基本初等函數(shù)】

  一、指數(shù)函數(shù)

 。ㄒ唬┲笖(shù)與指數(shù)冪的運算

  1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈

  當是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負數(shù)的次方根是一個負數(shù)。此時,的次方根用符號表示。式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand)。

  當是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù)。此時,正數(shù)的正的次方根用符號表示,負的'次方根用符號—表示。正的次方根與負的次方根可以合并成±(>0)。由此可得:負數(shù)沒有偶次方根;0的任何次方根都是0,記作。

  注意:當是奇數(shù)時,當是偶數(shù)時,

  2、分數(shù)指數(shù)冪

  正數(shù)的分數(shù)指數(shù)冪的意義,規(guī)定:

  0的正分數(shù)指數(shù)冪等于0,0的負分數(shù)指數(shù)冪沒有意義

  指出:規(guī)定了分數(shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質也同樣可以推廣到有理數(shù)指數(shù)冪。

  3、實數(shù)指數(shù)冪的運算性質

 。ǘ┲笖(shù)函數(shù)及其性質

  1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域為R。

  注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負數(shù)、零和1。

  2、指數(shù)函數(shù)的圖象和性質

高一數(shù)學知識點總結13

  高一年級數(shù)學必修三知識點

  (1)指數(shù)函數(shù)的定義域為所有實數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。

  (2)指數(shù)函數(shù)的值域為大于0的實數(shù)集合。

  (3)函數(shù)圖形都是下凹的。

  (4)a大于1,則指數(shù)函數(shù)單調遞增;a小于1大于0,則為單調遞減的。

  (5)可以看到一個顯然的規(guī)律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

  (6)函數(shù)總是在某一個方向上無限趨向于X軸,永不相交。

  (7)函數(shù)總是通過(0,1)這點。

  (8)顯然指數(shù)函數(shù)無_。

  奇偶性

  定義

  一般地,對于函數(shù)f(x)

  (1)如果對于函數(shù)定義域內的任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。

  (2)如果對于函數(shù)定義域內的任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。

  (3)如果對于函數(shù)定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那么函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù)。

  (4)如果對于函數(shù)定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數(shù)f(x)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù)。

  高一數(shù)學必修二重要知識點

  公理1:如果一條直線上的兩點在一個平面內,那么這條直線上的所有的點都在這個平面內。

  公理2:如果兩個平面有一個公共點,那么它們有且只有一條通過這個點的公共直線。

  公理3:過不在同一條直線上的三個點,有且只有一個平面。

  推論1:經過一條直線和這條直線外一點,有且只有一個平面。

  推論2:經過兩條相交直線,有且只有一個平面。

  推論3:經過兩條平行直線,有且只有一個平面。

  公理4:平行于同一條直線的兩條直線互相平行。

  等角定理:如果一個角的兩邊和另一個角的兩邊分別平行并且方向相同,那么這兩個角相等。

  高一年級數(shù)學高效學習方法

  基礎是關鍵,課本是首選

  首先,新高一同學要明確的是:高一數(shù)學是高中數(shù)學的重點基礎。剛進入高一,有些學生還不是很適應,如果直接學習高考技巧仿佛是“沒學好走就想跑”。任何的技巧都是建立在牢牢的基礎知識之上,因此建議高一的學生多抓基礎,多看課本。

  在應試教育中,只有多記公式,掌握解題技巧,熟悉各種題型,把自己變成一個做題機器,才能在考試中取得的成績。在高考中只會做題是不行的,一定要在會的基礎上加個“熟練”才行,小題一般要控制在每個兩分鐘左右。

  高一數(shù)學的知識掌握較多,高一試題約占高考得分的70%,一學年要學五本書,只要把高一的數(shù)學掌握牢靠,高二,高三則只是對高一的復習與補充,所以進入高中后,要盡快適應新環(huán)境,上課認真聽,多做筆記,一定會學好數(shù)學。

  因此,新高一同學應該在熟記概念的基礎上,多做練習,穩(wěn)扎穩(wěn)打,只有這樣,才能學好數(shù)學。

  一、數(shù)學預習

  預習是學好數(shù)學的必要前提,可謂是“火燒赤壁”所需“東風”.總的來說,預習可以分為以下2步。

  1.預習即將學習的章節(jié)的'課本知識。在預習課本的過程中,要將課本中的定義、定理記熟,做到活學活用。有是要仔細做課本上的例題以及課后練習,這些基礎性的東西往往是最重要的。

  2.自覺完成自學稿。自學稿是新課改以來歡迎的學習方式!首先應將自學稿上的《預習檢測》部分寫完,然后想后看題。在剛開始,可能會有一些不會做,記住不要苦心去鉆研,那樣往往會事倍功半!

  二、數(shù)學聽講

  聽講是學好數(shù)學的重要環(huán)節(jié)。可以這么說,不聽講,就不會有好成績。

  1.在上課時,認真聽老師講課,積極發(fā)言。在遇到不懂的問題時,做上標記,課后及時的向老師請教!

  2.記錄往往是一個細小的環(huán)節(jié)。注意老師重復的語句,以及寫在黑板上的大量文字(數(shù)學老師一般不多寫字),及時地用一個小本記錄下來,這樣日積月累,會形成一個知識小冊。

高一數(shù)學知識點總結14

  考點要求:

  1、幾何體的展開圖、幾何體的三視圖仍是高考的熱點。

  2、三視圖和其他的知識點結合在一起命題是新教材中考查學生三視圖及幾何量計算的趨勢。

  3、重點掌握以三視圖為命題背景,研究空間幾何體的結構特征的題型。

  4、要熟悉一些典型的幾何體模型,如三棱柱、長(正)方體、三棱錐等幾何體的三視圖。

  知識結構:

  1、多面體的結構特征

  (1)棱柱有兩個面相互平行,其余各面都是平行四邊形,每相鄰兩個四邊形的公共邊平行。

  正棱柱:側棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱。反之,正棱柱的底面是正多邊形,側棱垂直于底面,側面是矩形。

 。2)棱錐的底面是任意多邊形,側面是有一個公共頂點的三角形。

  正棱錐:底面是正多邊形,頂點在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐。特別地,各棱均相等的正三棱錐叫正四面體。反過來,正棱錐的底面是正多邊形,且頂點在底面的射影是底面正多邊形的中心。

 。3)棱臺可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形。

  2、旋轉體的結構特征

 。1)圓柱可以由矩形繞一邊所在直線旋轉一周得到。

 。2)圓錐可以由直角三角形繞一條直角邊所在直線旋轉一周得到。

 。3)圓臺可以由直角梯形繞直角腰所在直線旋轉一周或等腰梯形繞上下底面中心所在直線旋轉半周得到,也可由平行于底面的平面截圓錐得到。

  (4)球可以由半圓面繞直徑旋轉一周或圓面繞直徑旋轉半周得到。

  3、空間幾何體的三視圖

  空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側視圖、俯視圖。

  三視圖的'長度特征:“長對正,寬相等,高平齊”,即正視圖和側視圖一樣高,正視圖和俯視圖一樣長,側視圖和俯視圖一樣寬。若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三視圖中,要注意實、虛線的畫法。

  4、空間幾何體的直觀圖

  空間幾何體的直觀圖常用斜二測畫法來畫,基本步驟是:

 。1)畫幾何體的底面

  在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點O,畫直觀圖時,把它們畫成對應的x′軸、y′軸,兩軸相交于點O′,且使∠x′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線段,在直觀圖中平行于x′軸、y′軸。已知圖形中平行于x軸的線段,在直觀圖中長度不變,平行于y軸的線段,長度變?yōu)樵瓉淼囊话搿?/p>

 。2)畫幾何體的高

  在已知圖形中過O點作z軸垂直于xOy平面,在直觀圖中對應的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線段,在直觀圖中仍平行于z′軸且長度不變。

高一數(shù)學知識點總結15

  一:函數(shù)及其表示

  知識點詳解文檔包含函數(shù)的概念、映射、函數(shù)關系的判斷原則、函數(shù)區(qū)間、函數(shù)的三要素、函數(shù)的定義域、求具體或抽象數(shù)值的函數(shù)值、求函數(shù)值域、函數(shù)的表示方法等

  1. 函數(shù)與映射的區(qū)別:

  2. 求函數(shù)定義域

  常見的用解析式表示的函數(shù)f(x)的定義域可以歸納如下:

 、佼攆(x)為整式時,函數(shù)的定義域為R.

 、诋攆(x)為分式時,函數(shù)的定義域為使分式分母不為零的.實數(shù)集合。

  ③當f(x)為偶次根式時,函數(shù)的定義域是使被開方數(shù)不小于0的實數(shù)集合。

 、墚攆(x)為對數(shù)式時,函數(shù)的定義域是使真數(shù)為正、底數(shù)為正且不為1的實數(shù)集合。

 、萑绻鹒(x)是由幾個部分的數(shù)學式子構成的,那么函數(shù)定義域是使各部分式子都有意義的實數(shù)集合,即求各部分有意義的實數(shù)集合的交集。

 、迯秃虾瘮(shù)的定義域是復合的各基本的函數(shù)定義域的交集。

 、邔τ谟蓪嶋H問題的背景確定的函數(shù),其定義域除上述外,還要受實際問題的制約。

  3. 求函數(shù)值域

  (1)、觀察法:通過對函數(shù)定義域、性質的觀察,結合函數(shù)的解析式,求得函數(shù)的值域;

  (2)、配方法;如果一個函數(shù)是二次函數(shù)或者經過換元可以寫成二次函數(shù)的形式,那么將這個函數(shù)的右邊配方,通過自變量的范圍可以求出該函數(shù)的值域;

  (3)、判別式法:

  (4)、數(shù)形結合法;通過觀察函數(shù)的圖象,運用數(shù)形結合的方法得到函數(shù)的值域;

  (5)、換元法;以新變量代替函數(shù)式中的某些量,使函數(shù)轉化為以新變量為自變量的函數(shù)形式,進而求出值域;

  (6)、利用函數(shù)的單調性;如果函數(shù)在給出的定義域區(qū)間上是嚴格單調的,那么就可以利用端點的函數(shù)值來求出值域;

  (7)、利用基本不等式:對于一些特殊的分式函數(shù)、高于二次的函數(shù)可以利用重要不等式求出函數(shù)的值域;

  (8)、最值法:對于閉區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),可求出y=f(x)在區(qū)間[a,b]內的極值,并與邊界值f(a).f(b)作比較,求出函數(shù)的最值,可得到函數(shù)y的值域;

  (9)、反函數(shù)法:如果函數(shù)在其定義域內存在反函數(shù),那么求函數(shù)的值域可以轉化為求反函數(shù)的定義域。

【高一數(shù)學知識點總結】相關文章:

高一數(shù)學高考知識點總結07-31

高一數(shù)學知識點總結12-06

高一數(shù)學必修一知識點總結03-24

高一數(shù)學必修1知識點總結03-23

高一數(shù)學知識點03-28

高一數(shù)學集合知識點07-25

高一數(shù)學知識點集合07-12

高一數(shù)學知識點公式07-03

高一數(shù)學集合知識點整理07-20

高一數(shù)學必修一知識點05-14