- 考研單位工作證明 推薦度:
- 考研上岸的文案 推薦度:
- 滅鼠最佳方法 推薦度:
- 考研加油的文案 推薦度:
- ?佳猩习段陌 推薦度:
- 相關(guān)推薦
考研高數(shù)不等式證明的方法
不等式證明是考研數(shù)學(xué)試卷中的中上等難度題目,我們在復(fù)習(xí)的時候,一定要掌握好復(fù)習(xí)的方法。小編為大家精心準(zhǔn)備了考研高數(shù)的知識點,歡迎大家前來閱讀。
考研高數(shù)重難點:不等式證明的方法
利用微分中值定理:微分中值定理在高數(shù)的證明題中是非常大的,在等式和不等式的證明中都會用到。當(dāng)不等式或其適當(dāng)變形中有函數(shù)值之差時,一般可考慮用拉格朗日中值定理證明?挛髦兄刀ɡ硎抢窭嗜罩兄刀ɡ淼囊粋推廣,當(dāng)不等式或其適當(dāng)變形中有兩個函數(shù)在兩點的函數(shù)值之差的比值時,可考慮用柯西中值定理證明。
利用定積分中值定理:該定理是在處理含有定積分的不等式證明中經(jīng)常要用到的理論,一般只要求被積函數(shù)具有連續(xù)性即可。基本思路是通過定積分中值定理消去不等式中的積分號,從而與其他項作大小的比較,進(jìn)而得出證明。
除此之外,最常用的方法是左右兩邊相減構(gòu)造輔助函數(shù),若函數(shù)的最小值為0或為常數(shù),則該函數(shù)就是大于零的,從而不等式得以證明。
考研數(shù)學(xué)復(fù)習(xí)建議
一、打牢基礎(chǔ)
“懂”,首先要求同學(xué)們對考研數(shù)學(xué)的形式、考研大綱及考研用書進(jìn)行全面的分析與深入的.了解。這個階段,要求同學(xué)們?nèi)硇倪M(jìn)行基礎(chǔ)階段的復(fù)習(xí)。這個階段同學(xué)們一定要認(rèn)真細(xì)致學(xué)習(xí)課本基本知識點,弄熟定義、公式、定理及相關(guān)習(xí)題。只有打牢基礎(chǔ),才能決勝千里。最后,要求同學(xué)們做好規(guī)劃,合理安排復(fù)習(xí),做好經(jīng)常性的總結(jié)與歸納。
二、踏實前行
數(shù)學(xué)不像英語和政治科目,能通過一定的背誦、記憶,就能取得可觀的成績。數(shù)學(xué)必須通過大量的練習(xí),才能得到鞏固。不盲目地搞題海戰(zhàn)術(shù),要有計劃、有針對性地做題,才能將知識領(lǐng)悟得透徹。強化階段,同學(xué)們一定要利用好復(fù)習(xí)資料,做題的過程中,重點積累技巧與方法,吃透數(shù)學(xué)的知識點與題型。
三、總結(jié)歸納
經(jīng)過前期基礎(chǔ)知識的積累和做題的鞏固,同學(xué)們對知識點、練習(xí)題、真題都有了深刻的認(rèn)識。這時,要做好歸納與總結(jié),構(gòu)建整體的知識結(jié)構(gòu)體系,將之前所學(xué)的知識點牢牢記憶在腦海中。充分利用知識的遷移,達(dá)到舉一反三的效果。遇到一些重點和難點題型,首先不畏懼,其次回顧之前學(xué)習(xí)的相關(guān)知識,并有效利用它們,來解決遇到的問題,最后將以往所學(xué)深深記憶在腦海中,達(dá)到“化”的境界。
考研數(shù)學(xué)復(fù)習(xí)歷年考的最多的知識點
1、兩個重要極限,未定式的極限、等價無窮小代換
這些小的知識點在歷年的考察中都比較高。而透過我們分析,假如考極限的話,主要考的是洛必達(dá)法則加等價無窮小代換,特別針對數(shù)三的同學(xué),這兒可能出大題。
2、處理連續(xù)性,可導(dǎo)性和可微性的關(guān)系
要求掌握各種函數(shù)的求導(dǎo)方法。比如隱函數(shù)求導(dǎo),參數(shù)方程求導(dǎo)等等這一類的,還有注意一元函數(shù)的應(yīng)用問題,這也是歷年考試的一個重點。數(shù)三的同學(xué)這兒結(jié)合經(jīng)濟類的一些試題進(jìn)行考察。
3、微分方程:一是一元線性微分方程,第二是二階常系數(shù)齊次/非齊次線性微分方程
對第一部分,考生需要掌握九種小類型,針對每一種小類型有不同的解題方式,針對每個不同的方程,套用不同的公式就行了。對于二階常系數(shù)線性微分方程大家一定要理解解的結(jié)構(gòu)。另一塊對于非齊次的方程來說,考生要注意它和特征方程的聯(lián)系,有齊次為方程可以求它的通解,當(dāng)然給出的通解大家也要寫出它的特征方程,這個變化是咱們這幾年的一個趨勢。這一類問題就是逆問題。
對于二階常系數(shù)非齊次的線性方程大家要分類掌握。當(dāng)然,這一塊對于數(shù)三的同學(xué)來說,還有一個差分方程的問題,差分方程不作為咱們的一個重點,而且提醒大家一下,學(xué)習(xí)的時候要注意,差分方程的解題方式和微方程是相似的,學(xué)習(xí)的時候要注意這一點。
4、級數(shù)問題,主要針對數(shù)一和數(shù)三
這部分的重點是:一、常數(shù)項級數(shù)的性質(zhì),包括斂散性;二、牽扯到冪級數(shù),大家要熟練掌握冪級數(shù)的收斂區(qū)間的計算,收斂半徑與和函數(shù),冪級數(shù)展開的問題,要掌握一個熟練的方法來進(jìn)行計算。對于冪級數(shù)求和函數(shù)它可能直接給咱們一個冪級數(shù)求它的和函數(shù)或者給出一個常數(shù)項級數(shù)讓咱們求它的和,要轉(zhuǎn)化成適當(dāng)?shù)膬缂墧?shù)來進(jìn)行求和。
5、一維隨機變量函數(shù)的分布
這個要重點掌握連續(xù)性變量的這一塊。這里面有個難點,一維隨機變量函數(shù)這是一個難點,求一元隨機變量函數(shù)的分布有兩種方式,一個是分布函數(shù)法,這是最基本要掌握的。另外是公式法,公式法相對比較便捷,但是應(yīng)用范圍有一定的局限性。
6、隨機變量的數(shù)字特征
要記住一維隨機變量的數(shù)字特征都要記熟,數(shù)字特征很少單獨性考察,往往和前面的一維隨機變量函數(shù)和多維隨機變量函數(shù)和第六章的數(shù)理統(tǒng)計結(jié)合進(jìn)行考察。特別針對數(shù)一的同學(xué)來說,考察矩估計和最大似然估計的時候會考察無偏性。
7、參數(shù)估計
這一點是咱們經(jīng)常出大題的地方,這一塊對咱們數(shù)一,數(shù)二,數(shù)三的考生來講,包含兩塊知識點,一個是矩估計,一個是最大似然估計,這兩個集中出大題。
【考研高數(shù)不等式證明的方法】相關(guān)文章:
考研高數(shù)不等式證明的復(fù)習(xí)方法11-25
考研數(shù)學(xué)高數(shù)復(fù)習(xí)的方法12-05
考研高數(shù)沖刺階段的做題方法12-08
考研高數(shù)沖刺的重要定理如何證明12-22
考研數(shù)學(xué)高數(shù)重要定理證明匯總01-26
考研數(shù)學(xué)高數(shù)的復(fù)習(xí)方法及重點12-19
考研高數(shù)中值定理的復(fù)習(xí)方法12-20