[集合]高中數(shù)學(xué)教案模板15篇
作為一位優(yōu)秀的人民教師,時(shí)常要開展教案準(zhǔn)備工作,教案是教學(xué)活動(dòng)的總的組織綱領(lǐng)和行動(dòng)方案。教案要怎么寫呢?下面是小編整理的高中數(shù)學(xué)教案模板,歡迎大家分享。
高中數(shù)學(xué)教案模板1
教學(xué)目標(biāo)
(1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問題;
(2)使學(xué)生掌握組合數(shù)的計(jì)算公式;
(3)通過學(xué)習(xí)組合知識(shí),讓學(xué)生掌握類比的學(xué)習(xí)方法,并提高學(xué)生分析問題和解決問題的能力;
教學(xué)重點(diǎn)難點(diǎn)
重點(diǎn)是組合的定義、組合數(shù)及組合數(shù)的公式;
難點(diǎn)是解組合的應(yīng)用題.
教學(xué)過程設(shè)計(jì)
(-)導(dǎo)入新課
(教師活動(dòng))提出下列思考問題,打出字幕.
[字幕]一條鐵路線上有6個(gè)火車站,(1)需準(zhǔn)備多少種不同的普通客車票?(2)有多少種不同票價(jià)的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?
(學(xué)生活動(dòng))討論并回答.
答案提示:(1)排列;(2)組合.
[評述]問題(1)是從6個(gè)火車站中任選兩個(gè),并按一定的順序排列,要求出排法的種數(shù),屬于排列問題;(2)是從6個(gè)火車站中任選兩個(gè)并成一組,兩站無順序關(guān)系,要求出不同的組數(shù),屬于組合問題.這節(jié)課著重研究組合問題.
設(shè)計(jì)意圖:組合與排列所研究的問題幾乎是平行的上面設(shè)計(jì)的問題目的是從排列知識(shí)中發(fā)現(xiàn)并提出新的問題.
(二)新課講授
[提出問題 創(chuàng)設(shè)情境]
(教師活動(dòng))指導(dǎo)學(xué)生帶著問題閱讀課文.
[字幕]1.排列的定義是什么?
2.舉例說明一個(gè)組合是什么?
3.一個(gè)組合與一個(gè)排列有何區(qū)別?
(學(xué)生活動(dòng))閱讀回答.
(教師活動(dòng))對照課文,逐一評析.
設(shè)計(jì)意圖:激活學(xué)生的思維,使其將所學(xué)的知識(shí)遷移過渡,并盡快適應(yīng)新的環(huán)境.
【歸納概括 建立新知】
(教師活動(dòng))承接上述問題的回答,展示下面知識(shí).
[字幕]模型:從 個(gè)不同元素中取出 個(gè)元素并成一組,叫做從 個(gè)不同元素中取出 個(gè)元素的一個(gè)組合.如前面思考題:6個(gè)火車站中甲站→乙站和乙站→甲站是票價(jià)相同的車票,是從6個(gè)元素中取出2個(gè)元素的一個(gè)組合.
組合數(shù):從 個(gè)不同元素中取出 個(gè)元素的所有組合的個(gè)數(shù),稱之,用符號(hào) 表示,如從6個(gè)元素中取出2個(gè)元素的組合數(shù)為 .
[評述]區(qū)分一個(gè)排列與一個(gè)組合的關(guān)鍵是:該問題是否與順序有關(guān),當(dāng)取出元素后,若改變一下順序,就得到一種新的取法,則是排列問題;若改變順序,仍得原來的`取法,就是組合問題.
(學(xué)生活動(dòng))傾聽、思索、記錄.
(教師活動(dòng))提出思考問題.
[投影] 與 的關(guān)系如何?
(師生活動(dòng))共同探討.求從 個(gè)不同元素中取出 個(gè)元素的排列數(shù) ,可分為以下兩步:
第1步,先求出從這 個(gè)不同元素中取出 個(gè)元素的組合數(shù)為 ;
第2步,求每一個(gè)組合中 個(gè)元素的全排列數(shù)為 .根據(jù)分步計(jì)數(shù)原理,得到
[字幕]公式1:
公式2:
(學(xué)生活動(dòng))驗(yàn)算 ,即一條鐵路上6個(gè)火車站有15種不同的票價(jià)的普通客車票.
設(shè)計(jì)意圖:本著以認(rèn)識(shí)概念為起點(diǎn),以問題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識(shí)的形成過程,使學(xué)生思維層層被激活、逐漸深入到問題當(dāng)中去.
【例題示范 探求方法】
(教師活動(dòng))打出字幕,給出示范,指導(dǎo)訓(xùn)練.
[字幕]例1 列舉從4個(gè)元素 中任取2個(gè)元素的所有組合.
例2 計(jì)算:(1) ;(2) .
(學(xué)生活動(dòng))板演、示范.
(教師活動(dòng))講評并指出用兩種方法計(jì)算例2的第2小題.
[字幕]例3 已知 ,求 的所有值.
(學(xué)生活動(dòng))思考分析.
解 首先,根據(jù)組合的定義,有
、
其次,由原不等式轉(zhuǎn)化為
即
解得 ②
綜合①、②,得 ,即
[點(diǎn)評]這是組合數(shù)公式的應(yīng)用,關(guān)鍵是公式的選擇.
設(shè)計(jì)意圖:例題教學(xué)循序漸進(jìn),讓學(xué)生鞏固知識(shí),強(qiáng)化公式的應(yīng)用,從而培養(yǎng)學(xué)生的綜合分析能力.
【反饋練習(xí) 學(xué)會(huì)應(yīng)用】
(教師活動(dòng))給出練習(xí),學(xué)生解答,教師點(diǎn)評.
[課堂練習(xí)]課本P99練習(xí)第2,5,6題.
[補(bǔ)充練習(xí)]
[字幕]1.計(jì)算:
2.已知 ,求 .
(學(xué)生活動(dòng))板演、解答.
設(shè)計(jì)意圖:課堂教學(xué)體現(xiàn)以學(xué)生為本,讓全體學(xué)生參與訓(xùn)練,深刻揭示排列數(shù)公式的結(jié)構(gòu)、特征及應(yīng)用.
(三)小結(jié)
(師生活動(dòng))共同小結(jié).
本節(jié)主要內(nèi)容有
1.組合概念.
2.組合數(shù)計(jì)算的兩個(gè)公式.
(四)布置作業(yè)
1.課本作業(yè):習(xí)題10 3第1(1)、(4),3題.
2.思考題:某學(xué)習(xí)小組有8個(gè)同學(xué),從男生中選2人,女生中選1人參加數(shù)學(xué)、物理、化學(xué)三種學(xué)科競賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學(xué)各有多少人?
3.研究性題:
在 的 邊上除頂點(diǎn) 外有 5個(gè)點(diǎn),在 邊上有 4個(gè)點(diǎn),由這些點(diǎn)(包括 )能組成多少個(gè)四邊形?能組成多少個(gè)三角形?
(五)課后點(diǎn)評
在學(xué)習(xí)了排列知識(shí)的基礎(chǔ)上,本節(jié)課引進(jìn)了組合概念,并推導(dǎo)出組合數(shù)公式,同時(shí)調(diào)控進(jìn)行訓(xùn)練,從而培養(yǎng)學(xué)生分析問題、解決問題的能力.
高中數(shù)學(xué)教案模板2
=
=425a0b0=425.
點(diǎn)評:化簡這類式子一般有兩種辦法,一是首先用負(fù)指數(shù)冪的定義把負(fù)指數(shù)化成正指數(shù),另一個(gè)方法是采用分式的基本性質(zhì)把負(fù)指數(shù)化成正指數(shù)。
(3)5-26+7-43-6-42
=(3-2)2+(2-3)2-(2-2)2
=3-2+2-3-2+2=0.
點(diǎn)評:考慮根號(hào)里面的數(shù)是一個(gè)完全平方數(shù),千萬注意方根的性質(zhì)的運(yùn)用。
例3 已知 ,n∈正整數(shù)集,求(x+1+x2)n的值。
活動(dòng):學(xué)生思考,觀察題目的特點(diǎn),從整體上看,應(yīng)先化簡,然后再求值,要有預(yù)見性, 與 具有對稱性,它們的積是常數(shù)1,為我們解題提供了思路,教師引導(dǎo)學(xué)生考慮問題的思路,必要時(shí)給予提示。
= 。
這時(shí)應(yīng)看到1+x2= ,這樣先算出1+x2,再算出1+x2,代入即可。
解:將 代入1+x2,得1+x2= ,所以(x+1+x2)n=
=
= =5.
點(diǎn)評:運(yùn)用整體思想和完全平方公式是解決本題的關(guān)鍵,要深刻理解這種做法。
知能訓(xùn)練
課本習(xí)題2.1A組 3.
利用投影儀投射下列補(bǔ)充練習(xí):
1、化簡: 的結(jié)果是( )
A. B.
C. D.
解析:根據(jù)本題的特點(diǎn),注意到它的整體性,特別是指數(shù)的規(guī)律性,我們可以進(jìn)行適當(dāng)?shù)淖冃巍?/p>
因?yàn)?,所以原式的分子分母同乘以 。
依次類推,所以 。
答案:A
2、計(jì)算2790.5+0.1-2+ -3π0+9-0.5+490.5×2-4.
解:原式=
=53+100+916-3+13+716=100.
3、計(jì)算a+2a-1+a-2a-1(a≥1)。
解:原式=(a-1+1)2+(a-1-1)2=a-1+1+|a-1-1|(a≥1)。
本題可以繼續(xù)向下做,去掉絕對值,作為思考留作課下練習(xí)。
4、設(shè)a>0, ,則(x+1+x2)n的值為__________.
解析:1+x2= 。
這樣先算出1+x2,再算出1+x2,將 代入1+x2,得1+x2= 。
所以(x+1+x2)n=
= =a.
答案:a
拓展提升
參照我們說明無理數(shù)指數(shù)冪的意義的過程,請你說明無理數(shù)指數(shù)冪 的意義。
活動(dòng):教師引導(dǎo)學(xué)生回顧無理數(shù)指數(shù)冪 的意義的過程,利用計(jì)算器計(jì)算出3的近似值,取它的過剩近似值和不足近似值,根據(jù)這些近似值計(jì)算 的過剩近似值和不足近似值,利用逼近思想,“逼出” 的意義,學(xué)生合作交流,在投影儀上展示自己的探究結(jié)果。
解:3=1.732 050 80…,取它的過剩近似值和不足近似值如下表。
3的過剩近似值
的過剩近似值
3的不足近似值
的不足近似值
1.8 3.482 202 253 1.7 3.249 009 585
1.74 3.340 351 678 1.73 3.317 278 183
1.733 3.324 183 446 1.731 3.319 578 342
1.732 1 3.322 110 36 1.731 9 3.321 649 849
1.732 06 3.322 018 252 1.732 04 3.321 972 2
1.732 051 3.321 997 529 1.732 049 3.321 992 923
1.732 050 9 3.321 997 298 1.732 050 7 3.321 996 838
1.732 050 81 3.321 997 091 1.732 050 79 3.321 997 045
… … … …
我們把用2作底數(shù),3的不足近似值作指數(shù)的各個(gè)冪排成從小到大的一列數(shù)
21.7,21.72,21.731,21.731 9,…,同樣把用2作底數(shù),3的過剩近似值作指數(shù)的各個(gè)冪排成從大到小的一列數(shù):
21.8,21.74,21.733,21.732 1,…,不難看出3的過剩近似值和不足近似值相同的位數(shù)越多,即3的近似值精確度越高,以其過剩近似值和不足近似值為指數(shù)的冪2α?xí)絹碓节吔谕粋(gè)數(shù),我們把這個(gè)數(shù)記為 ,即21.7<21.73<21.731<21.731 9<…< <…<21.732 1<21.733<21.74<21.8.
也就是說 是一個(gè)實(shí)數(shù), =3.321 997 …也可以這樣解釋:
當(dāng)3的過剩近似值從大于3的方向逼近3時(shí),23的近似值從大于 的.方向逼近 ;
當(dāng)3的不足近似值從小于3的方向逼近3時(shí),23的近似值從小于 的方向逼近 。
所以 就是一串有理指數(shù)冪21.7,21.73,21.731,21.731 9,…,和另一串有理指數(shù)冪21.8,21.74,21.733,21.732 1,…,按上述規(guī)律變化的結(jié)果,即 ≈3.321 997.
課堂小結(jié)
。1)無理指數(shù)冪的意義。
一般地,無理數(shù)指數(shù)冪aα(a>0,α是無理數(shù)) 是一個(gè)確定的實(shí)數(shù)。
。2)實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì):
對任意的實(shí)數(shù)r,s,均有下面的運(yùn)算性質(zhì):
、賏r?as=ar+s(a>0,r,s∈R)。
、(ar)s=ars(a>0,r,s∈R)。
、(a?b)r=arbr(a>0,b>0,r∈R)。
。3)逼近的思想,體會(huì)無限接近的含義。
作業(yè)
課本習(xí)題2.1 B組 2.
設(shè)計(jì)感想
無理數(shù)指數(shù)是指數(shù)概念的又一次擴(kuò)充, 教學(xué)中要讓學(xué)生通過多媒體的演示,理解無理數(shù)指數(shù)冪的意義,教學(xué)中也可以讓學(xué)生自己通過實(shí)際情況去探索,自己得出結(jié)論,加深對概念的理解,本堂課內(nèi)容較為抽象,又不能進(jìn)行推理,只能通過多媒體的教學(xué)手段,讓學(xué)生體會(huì),特別是逼近的思想、類比的思想,多作練習(xí),提高學(xué)生理解問題、分析問題的能力。
備課資料
【備用習(xí)題】
1、以下各式中成立且結(jié)果為最簡根式的是( )
A.a?5a3a?10a7=10a4
B.3xy2(xy)2=y?3x2
C.a2bb3aab3=8a7b15
D.(35-125)3=5+125125-235?125
答案:B
2、對于a>0,r,s∈Q,以下運(yùn)算中正確的是( 。
A.ar?as=ars B.(ar)s=ars
C.abr=ar?bs D.arbs=(ab)r+s
答案:B
3、式子x-2x-1=x-2x-1成立當(dāng)且僅當(dāng)( 。
A.x-2x-1≥0 B.x≠1 C.x<1 D.x≥2
解析:方法一:
要使式子x-2x-1=x-2x-1成立,需x-1>0,x-2≥0,即x≥2.
若x≥2,則式子x-2x-1=x-2x-1成立。
故選D.
方法二:
對A,式子x-2x-1≥0連式子成立也保證不了,尤其x-2≤0,x-1<0時(shí)式子不成立。
對B,x-1<0時(shí)式子不成立。
對C,x<1時(shí)x-1無意義。
對D正確。
答案:D
4、化簡b-(2b-1)(1
解:b-(2b-1)=(b-1)2=b-1(1
5、計(jì)算32+5+32-5.
解:令x=32+5+32-5,兩邊立方得x3=2+5+2-5+332+5?32-5?(32+5+32-5),即x3=4-3x,x3+3x-4=0.∴(x-1)(x2+x+4)=0.
∵x2+x+4=x+122+154>0,∴x-1=0,即x=1.
∴32+5+32-5=1.
高中數(shù)學(xué)教案模板3
1.課題
填寫課題名稱(高中代數(shù)類課題)
2.教學(xué)目標(biāo)
(1)知識(shí)與技能:
通過本節(jié)課的學(xué)習(xí),掌握。.。.。.知識(shí),提高學(xué)生解決實(shí)際問題的能力;
。2)過程與方法:
通過。.。.。.(討論、發(fā)現(xiàn)、探究),提高。.。.。.(分析、歸納、比較和概括)的能力;
。3)情感態(tài)度與價(jià)值觀:
通過本節(jié)課的學(xué)習(xí),增強(qiáng)學(xué)生的學(xué)習(xí)興趣,將數(shù)學(xué)應(yīng)用到實(shí)際生活中,增加學(xué)生數(shù)學(xué)學(xué)習(xí)的樂趣。
3.教學(xué)重難點(diǎn)
。1)教學(xué)重點(diǎn):本節(jié)課的知識(shí)重點(diǎn)
。2)教學(xué)難點(diǎn):易錯(cuò)點(diǎn)、難以理解的知識(shí)點(diǎn)
4、教學(xué)方法(一般從中選擇3個(gè)就可以了)
。1)討論法
。2)情景教學(xué)法
。3)問答法
。4)發(fā)現(xiàn)法
。5)講授法
5、教學(xué)過程
。1)導(dǎo)入
簡單敘述導(dǎo)入課題的方式和方法(例:復(fù)習(xí)、類比、情境導(dǎo)出本節(jié)課的課題)
。2)新授課程(一般分為三個(gè)小步驟)
、俸唵沃v解本節(jié)課基礎(chǔ)知識(shí)點(diǎn)(例:奇函數(shù)的定義)。
②歸納總結(jié)該課題中的重點(diǎn)知識(shí)內(nèi)容,尤其對該注意的一些情況設(shè)置易錯(cuò)點(diǎn),進(jìn)行強(qiáng)調(diào)?梢栽O(shè)計(jì)分組討論環(huán)節(jié)(分組判斷幾組函數(shù)圖像是否為奇函數(shù),并歸納奇函數(shù)圖像的特點(diǎn)。設(shè)置定義域不關(guān)于原點(diǎn)對稱的函數(shù)是否為奇函數(shù)的易錯(cuò)點(diǎn))。
、弁卣寡由,將所學(xué)知識(shí)拓展延伸到實(shí)際題目中,去解決實(shí)際生活中的問題。
。ㄔ谛率谡n里面一定要表下出講課的大體流程,但是不必太過詳細(xì)。)
(3)課堂小結(jié)
教師提問,學(xué)生回答本節(jié)課的收獲。
(4)作業(yè)提高
布置作業(yè)(盡量與實(shí)際生活相聯(lián)系,有所創(chuàng)新)。
6、教學(xué)板書
2.高中數(shù)學(xué)教案格式
一.課題(說明本課名稱)
二.教學(xué)目的(或稱教學(xué)要求,或稱教學(xué)目標(biāo),說明本課所要完成的教學(xué)任務(wù))
三.課型(說明屬新授課,還是復(fù)習(xí)課)
四.課時(shí)(說明屬第幾課時(shí))
五.教學(xué)重點(diǎn)(說明本課所必須解決的關(guān)鍵性問題)
六.教學(xué)難點(diǎn)(說明本課的`學(xué)習(xí)時(shí)易產(chǎn)生困難和障礙的知識(shí)傳授與能力培養(yǎng)點(diǎn))
七.教學(xué)方法要根據(jù)學(xué)生實(shí)際,注重引導(dǎo)自學(xué),注重啟發(fā)思維
八.教學(xué)過程(或稱課堂結(jié)構(gòu),說明教學(xué)進(jìn)行的內(nèi)容、方法步驟)
九.作業(yè)處理(說明如何布置書面或口頭作業(yè))
十.板書設(shè)計(jì)(說明上課時(shí)準(zhǔn)備寫在黑板上的內(nèi)容)
十一.教具(或稱教具準(zhǔn)備,說明輔助教學(xué)手段使用的工具)
十二.教學(xué)反思:(教者對該堂課教后的感受及學(xué)生的收獲、改進(jìn)方法)
高中數(shù)學(xué)教案模板4
教學(xué)目標(biāo)
1.了解映射的概念,象與原象的概念,和一一映射的概念.
。1)明確映射是特殊的對應(yīng)即由集合 ,集合 和對應(yīng)法則f三者構(gòu)成的一個(gè)整體,知道映射的特殊之處在于必須是多對一和一對一的對應(yīng);
。2)能準(zhǔn)確使用數(shù)學(xué)符號(hào)表示映射, 把握映射與一一映射的區(qū)別;
。3)會(huì)求給定映射的指定元素的象與原象,了解求象與原象的方法.
2.在概念形成過程中,培養(yǎng)學(xué)生的觀察,比較和歸納的能力.
3.通過映射概念的學(xué)習(xí),逐步提高學(xué)生對知識(shí)的探究能力.
教學(xué)建議
教材分析
(1)知識(shí)結(jié)構(gòu)
映射是一種特殊的對應(yīng),一一映射又是一種特殊的映射,而且函數(shù)也是特殊的映射,它們之間的關(guān)系可以通過下圖表示出來,如圖:
由此我們可從集合的包含關(guān)系中幫助我們把握相關(guān)概念間的區(qū)別與聯(lián)系.
。2)重點(diǎn),難點(diǎn)分析
本節(jié)的教學(xué)重點(diǎn)和難點(diǎn)是映射和一一映射概念的形成與認(rèn)識(shí).
①映射的概念是比較抽象的概念,它是在初中所學(xué)對應(yīng)的基礎(chǔ)上發(fā)展而來.教學(xué)中應(yīng)特別強(qiáng)調(diào)對應(yīng)集合 B中的唯一這點(diǎn)要求的理解;
映射是學(xué)生在初中所學(xué)的對應(yīng)的基礎(chǔ)上學(xué)習(xí)的,對應(yīng)本身就是由三部分構(gòu)成的整體,包括集 合A和集合B及對應(yīng)法則f,由于法則的不同,對應(yīng)可分為一對一,多對一,一對多和多對多. 其中只有一對一和多對一的能構(gòu)成映射,由此可以看到映射必是“對B中之唯一”,而只要是對應(yīng)就必須保證讓A中之任一與B中元素相對應(yīng),所以滿足一對一和多對一的對應(yīng)就能體現(xiàn)出“任一對唯一”.
、诙灰挥成溆衷谟成涞幕A(chǔ)上增加新的要求,決定了它在學(xué)習(xí)中是比較困難的.
教法建議
。1)在映射概念引入時(shí),可先從學(xué)生熟悉的對應(yīng)入手, 選擇一些具體的生活例子,然后再舉一些數(shù)學(xué)例子,分為一對多、多對一、多對一、一對一四種情況,讓學(xué)生認(rèn)真觀察,比較,再引導(dǎo)學(xué)生發(fā)現(xiàn)其中一對一和多對一的對應(yīng)是映射,逐步歸納概括出映射的基本特征,讓學(xué)生的認(rèn)識(shí)從感性認(rèn)識(shí)到理性認(rèn)識(shí).
。2)在剛開始學(xué)習(xí)映射時(shí),為了能讓學(xué)生看清映射的構(gòu)成,可以選擇用圖形表示映射,在集合的選擇上可選擇能用列舉法表示的有限集,法則盡量用語言描述,這樣的表示方法讓學(xué)生可以比較直觀的認(rèn)識(shí)映射,而后再選擇用抽象的數(shù)學(xué)符號(hào)表示映射,比如:
。3)對于學(xué)生層次較高的學(xué)?梢栽诮o出定義后讓學(xué)生根據(jù)自己的理解舉出映射的例子,教師也給出一些映射的例子,讓學(xué)生從中發(fā)現(xiàn)映射的特點(diǎn),并用自己的語言描述出來,最后教師加以概括,再從中引出一一映射概念;對于學(xué)生層次較低的學(xué)校,則可以由教師給出一些例子讓學(xué)生觀察,教師引導(dǎo)學(xué)生發(fā)現(xiàn)映射的特點(diǎn),一起概括.最后再讓學(xué)生舉例,并逐步增加要求向一一映射靠攏,引出一一映射概念.
。4)關(guān)于求象和原象的問題,應(yīng)在計(jì)算的過程中總結(jié)方法,特別是求原象的方法是解方程或方程組,還可以通過方程組解的不同情況(有唯一解,無解或有無數(shù)解)加深對映射的認(rèn)識(shí).
。5)在教學(xué)方法上可以采用啟發(fā),討論的形式,讓學(xué)生在實(shí)例中去觀察,比較,啟發(fā)學(xué)生尋找共性,共同討論映射的特點(diǎn),共同舉例,計(jì)算,最后進(jìn)行小結(jié),教師要起到點(diǎn)撥和深化的作用.
教學(xué)設(shè)計(jì)方案
2.1映射
教學(xué)目標(biāo)(1)了解映射的概念,象與原象及一一映射的概念.
(2)在概念形成過程中,培養(yǎng)學(xué)生的觀察,分析對比,歸納的能力.
(3)通過映射概念的學(xué)習(xí),逐步提高學(xué)生的`探究能力.
教學(xué)重點(diǎn)難點(diǎn)::映射概念的形成與認(rèn)識(shí).
教學(xué)用具:實(shí)物投影儀
教學(xué)方法:啟發(fā)討論式
教學(xué)過程:
一、引入
在初中,我們已經(jīng)初步探討了函數(shù)的定義并研究了幾類簡單的常見函數(shù).在高中,將利用前面集合有關(guān)知識(shí),利用映射的觀點(diǎn)給出函數(shù)的定義.那么映射是什么呢?這就是我們今天要詳細(xì)的概念.
二、新課
在前一章集合的初步知識(shí)中,我們學(xué)習(xí)了元素與集合及集合與集合之間的關(guān)系,而映射是重點(diǎn)研究兩個(gè)集合的元素與元素之間的對應(yīng)關(guān)系.這要先從我們熟悉的對應(yīng)說起(用投影儀打出一些對應(yīng)關(guān)系,共6個(gè))
我們今天要研究的是一類特殊的對應(yīng),特殊在什么地方呢?
提問1:在這些對應(yīng)中有哪些是讓A中元素就對應(yīng)B中唯一一個(gè)元素?
讓學(xué)生仔細(xì)觀察后由學(xué)生回答,對有爭議的,或漏選,多選的可詳細(xì)說明理由進(jìn)行討論.最后得出(1),(2),(5),(6)是符合條件的(用投影儀將這幾個(gè)集中在一起)
提問2:能用自己的語言描述一下這幾個(gè)對應(yīng)的共性嗎?
經(jīng)過師生共同推敲,將映射的定義引出.(主體內(nèi)容由學(xué)生完成,教師做必要的補(bǔ)充)
高中數(shù)學(xué)教案模板5
教學(xué)準(zhǔn)備
教學(xué)目標(biāo)
掌握等差數(shù)列與等比數(shù)列的概念,通項(xiàng)公式與前n項(xiàng)和公式,等差中項(xiàng)與等比中項(xiàng)的概念,并能運(yùn)用這些知識(shí)解決一些基本問題。
教學(xué)重難點(diǎn)
掌握等差數(shù)列與等比數(shù)列的概念,通項(xiàng)公式與前n項(xiàng)和公式,等差中項(xiàng)與等比中項(xiàng)的概念,并能運(yùn)用這些知識(shí)解決一些基本問題。
教學(xué)過程
等比數(shù)列性質(zhì)請同學(xué)們類比得出。
【方法規(guī)律】
1、通項(xiàng)公式與前n項(xiàng)和公式聯(lián)系著五個(gè)基本量,“知三求二”是一類最基本的運(yùn)算題。方程觀點(diǎn)是解決這類問題的基本數(shù)學(xué)思想和方法。
2、判斷一個(gè)數(shù)列是等差數(shù)列或等比數(shù)列,常用的'方法使用定義。特別地,在判斷三個(gè)實(shí)數(shù)
a,b,c成等差(比)數(shù)列時(shí),常用(注:若為等比數(shù)列,則a,b,c均不為0)
3、在求等差數(shù)列前n項(xiàng)和的最大(小)值時(shí),常用函數(shù)的思想和方法加以解決。
【示范舉例】
例1:
。1)設(shè)等差數(shù)列的前n項(xiàng)和為30,前2n項(xiàng)和為100,則前3n項(xiàng)和為。
。2)一個(gè)等比數(shù)列的前三項(xiàng)之和為26,前六項(xiàng)之和為728,則a1=,q=。
例2:四數(shù)中前三個(gè)數(shù)成等比數(shù)列,后三個(gè)數(shù)成等差數(shù)列,首末兩項(xiàng)之和為21,中間兩項(xiàng)之和為18,求此四個(gè)數(shù)。
例3:項(xiàng)數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項(xiàng)之和為44,偶數(shù)項(xiàng)之和為33,求該數(shù)列的中間項(xiàng)。
高中數(shù)學(xué)教案模板6
整體設(shè)計(jì)
教學(xué)分析
我們在初中的學(xué)習(xí)過程中,已了解了整數(shù)指數(shù)冪的概念和運(yùn)算性質(zhì)。從本節(jié)開始我們將在回顧平方根和立方根的基礎(chǔ)上,類比出正數(shù)的n次方根的定義,從而把指數(shù)推廣到分?jǐn)?shù)指數(shù)。進(jìn)而推廣到有理數(shù)指數(shù),再推廣到實(shí)數(shù)指數(shù),并將冪的運(yùn)算性質(zhì)由整數(shù)指數(shù)冪推廣到實(shí)數(shù)指數(shù)冪。
教材為了讓學(xué)生在學(xué)習(xí)之外就感受到指數(shù)函數(shù)的實(shí)際背景,先給出兩個(gè)具體例子:GDP的增長問題和碳14的衰減問題。前一個(gè)問題,既讓學(xué)生回顧了初中學(xué)過的整數(shù)指數(shù)冪,也讓學(xué)生感受到其中的函數(shù)模型,并且還有思想教育價(jià)值。后一個(gè)問題讓學(xué)生體會(huì)其中的函數(shù)模型的同時(shí),激發(fā)學(xué)生探究分?jǐn)?shù)指數(shù)冪、無理數(shù)指數(shù)冪的興趣與欲望,為新知識(shí)的學(xué)習(xí)作了鋪墊。
本節(jié)安排的內(nèi)容蘊(yùn)涵了許多重要的數(shù)學(xué)思想方法,如推廣的思想(指數(shù)冪運(yùn)算律的推廣)、類比的思想、逼近的思想(有理數(shù)指數(shù)冪逼近無理數(shù)指數(shù)冪)、數(shù)形結(jié)合的思想(用指數(shù)函數(shù)的圖象研究指數(shù)函數(shù)的性質(zhì))等,同時(shí),充分關(guān)注與實(shí)際問題的結(jié)合,體現(xiàn)數(shù)學(xué)的應(yīng)用價(jià)值。
根據(jù)本節(jié)內(nèi)容的特點(diǎn),教學(xué)中要注意發(fā)揮信息技術(shù)的力量,盡量利用計(jì)算器和計(jì)算機(jī)創(chuàng)設(shè)教學(xué)情境,為學(xué)生的數(shù)學(xué)探究與數(shù)學(xué)思維提供支持。
三維目標(biāo)
1、通過與初中所學(xué)的知識(shí)進(jìn)行類比,理解分?jǐn)?shù)指數(shù)冪的概念,進(jìn)而學(xué)習(xí)指數(shù)冪的性質(zhì)。掌握分?jǐn)?shù)指數(shù)冪和根式之間的互化,掌握分?jǐn)?shù)指數(shù)冪的運(yùn)算性質(zhì)。培養(yǎng)學(xué)生觀察分析、抽象類比的能力。
2、掌握根式與分?jǐn)?shù)指數(shù)冪的互化,滲透“轉(zhuǎn)化”的數(shù)學(xué)思想。通過運(yùn)算訓(xùn)練,養(yǎng)成學(xué)生嚴(yán)謹(jǐn)治學(xué),一絲不茍的學(xué)習(xí)習(xí)慣,讓學(xué)生了解數(shù)學(xué)來自生活,數(shù)學(xué)又服務(wù)于生活的哲理。
3、能熟練地運(yùn)用有理指數(shù)冪運(yùn)算性質(zhì)進(jìn)行化簡、求值,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S和科學(xué)正確的計(jì)算能力。
4、通過訓(xùn)練及點(diǎn)評,讓學(xué)生更能熟練掌握指數(shù)冪的運(yùn)算性質(zhì)。展示函數(shù)圖象,讓學(xué)生通過觀察,進(jìn)而研究指數(shù)函數(shù)的性質(zhì),讓學(xué)生體驗(yàn)數(shù)學(xué)的簡潔美和統(tǒng)一美。
重點(diǎn)難點(diǎn)
教學(xué)重點(diǎn)
。1)分?jǐn)?shù)指數(shù)冪和根式概念的理解。
。2)掌握并運(yùn)用分?jǐn)?shù)指數(shù)冪的運(yùn)算性質(zhì)。
(3)運(yùn)用有理指數(shù)冪的性質(zhì)進(jìn)行化簡、求值。
教學(xué)難點(diǎn)
。1)分?jǐn)?shù)指數(shù)冪及根式概念的理解。
(2)有理指數(shù)冪性質(zhì)的靈活應(yīng)用。
課時(shí)安排
3課時(shí)
教學(xué)過程
第1課時(shí)
作者:路致芳
導(dǎo)入新課
思路1.同學(xué)們在預(yù)習(xí)的過程中能否知道考古學(xué)家如何判斷生物的發(fā)展與進(jìn)化,又怎樣判斷它們所處的年代?(考古學(xué)家是通過對生物化石的研究來判斷生物的發(fā)展與進(jìn)化的,第二個(gè)問題我們不太清楚)考古學(xué)家是按照這樣一條規(guī)律推測生物所處的年代的。教師板書本節(jié)課題:指數(shù)函數(shù)——指數(shù)與指數(shù)冪的運(yùn)算。
思路2.同學(xué)們,我們在初中學(xué)習(xí)了平方根、立方根,那么有沒有四次方根、五次方根…n次方根呢?答案是肯定的,這就是我們本堂課研究的課題:指數(shù)函數(shù)——指數(shù)與指數(shù)冪的運(yùn)算。
推進(jìn)新課
新知探究
提出問題
。1)什么是平方根?什么是立方根?一個(gè)數(shù)的平方根有幾個(gè),立方根呢?
(2)如x4=a,x5=a,x6=a,根據(jù)上面的結(jié)論我們又能得到什么呢?
。3)根據(jù)上面的結(jié)論我們能得到一般性的結(jié)論嗎?
。4)可否用一個(gè)式子表達(dá)呢?
活動(dòng):教師提示,引導(dǎo)學(xué)生回憶初中的時(shí)候已經(jīng)學(xué)過的平方根、立方根是如何定義的,對照類比平方根、立方根的定義解釋上面的式子,對問題(2)的結(jié)論進(jìn)行引申、推廣,相互交流討論后回答,教師及時(shí)啟發(fā)學(xué)生,具體問題一般化,歸納類比出n次方根的概念,評價(jià)學(xué)生的思維。
討論結(jié)果:(1)若x2=a,則x叫做a的平方根,正實(shí)數(shù)的平方根有兩個(gè),它們互為相反數(shù),如:4的平方根為±2,負(fù)數(shù)沒有平方根,同理,若x3=a,則x叫做a的立方根,一個(gè)數(shù)的立方根只有一個(gè),如:-8的立方根為-2.
。2)類比平方根、立方根的定義,一個(gè)數(shù)的四次方等于a,則這個(gè)數(shù)叫a的四次方根。一個(gè)數(shù)的五次方等于a,則這個(gè)數(shù)叫a的五次方根。一個(gè)數(shù)的六次方等于a,則這個(gè)數(shù)叫a的六次方根。
。3)類比(2)得到一個(gè)數(shù)的n次方等于a,則這個(gè)數(shù)叫a的n次方根。
。4)用一個(gè)式子表達(dá)是,若xn=a,則x叫a的n次方根。
教師板書n次方根的意義:
一般地,如果xn=a,那么x叫做a的n次方根(n th root),其中n>1且n∈正整數(shù)集。
可以看出數(shù)的平方根、立方根的概念是n次方根的概念的特例。
提出問題
。1)你能根據(jù)n次方根的意義求出下列數(shù)的n次方根嗎?(多媒體顯示以下題目)。
①4的平方根;②±8的立方根;③16的'4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根。
(2)平方根,立方根,4次方根,5次方根,7次方根,分別對應(yīng)的方根的指數(shù)是什么數(shù),有什么特點(diǎn)?4,±8,16,-32,32,0,a6分別對應(yīng)什么性質(zhì) 的數(shù),有什么特點(diǎn)?
。3)問題(2)中,既然方根有奇次的也有偶次的,數(shù)a有正有負(fù),還有零,結(jié)論有一個(gè)的,也有兩個(gè)的,你能否總結(jié)一般規(guī)律呢?
。4)任何一個(gè)數(shù)a的偶次方根是否存在呢?
活動(dòng):教師提示學(xué)生切實(shí)緊扣n次方根的概念,求一個(gè)數(shù)a的n次方根,就是求出的那個(gè)數(shù)的n次方等于a,及時(shí)點(diǎn)撥學(xué)生,從數(shù)的分類考慮,可以把具體的數(shù)寫出來,觀察數(shù)的 特點(diǎn),對問題(2)中的結(jié)論,類比推廣引申,考慮要全面,對回答正確的學(xué)生及時(shí)表揚(yáng),對回答不準(zhǔn)確的學(xué)生提示引導(dǎo)考慮問題的思路。
討論結(jié)果:(1)因?yàn)椤?的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所 以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分別是±2,±2,±2,2,-2,0,a2.
。2)方根的指數(shù)是2,3,4,5,7…特點(diǎn)是有奇數(shù)和偶數(shù)?偟膩砜,這些數(shù)包括正數(shù),負(fù)數(shù)和零。
(3)一個(gè)數(shù)a的奇次方根只有一個(gè),一個(gè)正數(shù)a的偶次方根有兩個(gè),是互為相反數(shù)。0的任何次方根都是0.
。4)任何一個(gè)數(shù)a的偶次方根不一定存在,如負(fù)數(shù)的偶次方根就不存在,因?yàn)闆]有一個(gè)數(shù)的偶次方是一個(gè)負(fù)數(shù)。
類比前面的平方根、立方根,結(jié)合剛才的討論,歸納出一般情形,得到n次方根的性質(zhì):
①當(dāng)n為偶數(shù)時(shí),正數(shù)a的n次方根有兩個(gè),是互為相反數(shù),正的n次方根用na表示,如果是負(fù)數(shù),負(fù)的n次方根用-na表示,正的n次方根與負(fù)的n次方根合并寫成±na(a>0)。
、趎為奇數(shù)時(shí),正數(shù)的n次方根是一個(gè)正數(shù),負(fù)數(shù)的n次方根是一個(gè)負(fù)數(shù),這時(shí)a的n次方根用符號(hào)na表示。
、圬(fù)數(shù)沒有偶次方根;0的任何次方根都是零。
上面的文字語言可用下面的式子表示:
a為正數(shù):n為奇數(shù), a的n次方根有一個(gè)為na,n為偶數(shù), a的n次方根有兩個(gè)為±na.
a為負(fù)數(shù):n為奇數(shù), a的n次方根只有一個(gè)為na,n為偶數(shù), a的n次方根不存在。
零的n次方根為零,記為n0=0.
可以看出數(shù)的平方根、立方根的性質(zhì)是n次方根的性質(zhì)的特例。
思考
根據(jù)n次方根的性質(zhì)能否舉例說明上述幾種情況?
活動(dòng):教師提示學(xué)生對方根的性質(zhì)要分類掌握,即正數(shù)的奇偶次方根,負(fù)數(shù)的奇次方根,零的任何次方根,這樣才不重不漏,同時(shí)巡視學(xué)生,隨機(jī)給出一個(gè)數(shù),我們寫出它的平方根,立方根,四次方根等,看是否有意義,注意觀察方根的形式,及時(shí)糾正學(xué)生在舉例過程中的問題。
解:答案不,比如,64的立方根是4,16的四次方根為±2,-27的5次方根為5-27,而-27的4次方根不存在等。其中5-27也表示方根,它類似于na的形式,現(xiàn)在我們給式子na一個(gè)名稱——根式。
根式的概念:
式子na叫做根式,其中a叫做被開方數(shù),n叫做根指數(shù)。
如3-27中,3叫根指數(shù),-27叫被開方數(shù)。
思考
nan表示an的n次方根,式子nan=a一定成立嗎?如果不一定成立,那么nan等于什么?
活動(dòng):教師讓學(xué)生注意討論n為奇偶數(shù)和a的符號(hào),充分讓學(xué)生多舉實(shí)例,分組討論。教師點(diǎn)撥,注意歸納整理。
〔如3(-3)3=3-27=-3,4(-8)4=|-8|=8〕。
解答:根據(jù)n次方根的意義,可得:(na)n=a.
通過探究得到:n為奇數(shù),nan=a.
n為偶數(shù),nan=|a|=a,-a,a≥0,a<0.
因此我們得到n次方根的運(yùn)算性質(zhì):
、(na)n=a.先開方,再乘方(同次),結(jié)果為被開方數(shù)。
、趎為奇數(shù),nan=a.先奇次乘方,再開方(同次),結(jié)果為被開方數(shù)。
n為偶數(shù),nan=|a|=a,-a,a≥0,a<0.先偶次乘方,再開方(同次),結(jié)果為被開方數(shù)的絕對值。
應(yīng)用示例
思路1
例 求下列各式的值:
。1)3(-8)3;(2)(-10)2;(3)4(3-π)4;(4)(a-b)2(a>b)。
活動(dòng):求某些式子的值,首先考慮的應(yīng)是什么,明確題目的要求是什么,都用到哪些知識(shí),關(guān)鍵是啥,搞清這些之后,再針對每一個(gè)題目仔細(xì)分析。觀察學(xué)生的解題情況,讓學(xué)生展示結(jié)果,抓住學(xué)生在解題過程中出現(xiàn)的問題并對癥下藥。求下列各式的值實(shí)際上是求數(shù)的方根,可按方根的運(yùn)算性質(zhì)來解,首先要搞清楚運(yùn)算順序,目的是把被開方數(shù)的符號(hào)定準(zhǔn),然后看根指數(shù)是奇數(shù)還是偶數(shù),如果是奇數(shù),無需考慮符號(hào),如果是偶數(shù),開方的結(jié)果必須是非負(fù)數(shù)。
解:(1)3(-8)3=-8;
。2)(-10)2=10;
(3)4(3-π)4=π-3;
。4)(a-b)2=a-b(a>b)。
點(diǎn)評:不注意n的奇偶性對式子nan的值的影響 ,是導(dǎo)致問題出現(xiàn)的一個(gè)重要原因,要在理解的基礎(chǔ)上,記準(zhǔn),記熟,會(huì)用,活用。
變式訓(xùn)練
求出下列各式的值:
(1)7(-2)7;
(2)3(3a-3)3(a≤1);
(3)4(3a-3)4.
解:(1)7(-2)7=-2,(2)3(3a-3)3(a≤1)=3a-3,(3)4(3a-3)4=
點(diǎn)評:本題易錯(cuò)的是第(3)題,往往忽視a與1大小的討論,造成錯(cuò)解。
思路2
例1 下列各式中正確的是( 。
A.4a4=a
B.6(-2)2=3-2
C.a0=1
D.10(2-1)5=2-1
活動(dòng):教師提示,這是一道選擇題,本題考查n次方根的運(yùn)算性質(zhì),應(yīng)首先考慮根據(jù)方根的意義和運(yùn)算性質(zhì)來解,既要考慮被開方數(shù),又要考慮根指數(shù),嚴(yán)格按求方根的步驟,體會(huì)方根運(yùn)算的實(shí)質(zhì),學(xué)生先思考哪些地方容易出錯(cuò),再回答。
解析:(1)4a4=a,考查n次方根的運(yùn)算性質(zhì),當(dāng)n為偶數(shù)時(shí),應(yīng)先寫nan=|a|,故A項(xiàng)錯(cuò)。
(2)6(-2)2=3-2,本質(zhì)上與上題相同,是一個(gè)正數(shù)的偶次方根,根據(jù)運(yùn)算順序也應(yīng)如此,結(jié)論為6(-2)2=32,故B項(xiàng)錯(cuò)。
(3)a0=1是有條件的,即a≠0,故C項(xiàng)也錯(cuò)。
(4)D項(xiàng)是一個(gè)正數(shù)的偶次方根,根據(jù)運(yùn)算順序也應(yīng)如此,故D項(xiàng)正確。所以答案選D.
答案:D
點(diǎn)評:本題由于考查n次方根的運(yùn)算性質(zhì)與運(yùn)算順序,有時(shí)極易選錯(cuò),選四個(gè)答案的情況都會(huì)有,因此解題時(shí)千萬要細(xì)心。
例2 3+22+3-22=__________.
活動(dòng):讓同學(xué)們積極思考,交流討論,本題乍一看內(nèi)容與本節(jié)無關(guān),但仔細(xì)一想,我們學(xué)習(xí)的內(nèi)容是方根,這里是帶有雙重根號(hào)的式子,去掉一層根號(hào),根據(jù)方根的運(yùn)算求出結(jié)果是解題的關(guān)鍵,因此將根號(hào)下面的式子化成一個(gè)完全平方式就更為關(guān)鍵了,從何處入手?需利用和的平方公式與差的平方公式化為完全平方式。正確分析題意是關(guān)鍵,教師提示,引導(dǎo)學(xué)生解題的思路。
解析:因?yàn)?+22=1+22+(2)2=(1+2)2=2+1,3-22=(2)2-22+1=(2-1)2=2-1,所以3+22+3-22=22.
答案:22
點(diǎn)評:不難看出3-22與3+22形式上有些特點(diǎn),即是對稱根式,是A±2B形式的式子,我們總能找到辦法把其化成一個(gè)完全平方式。
思考
上面的例2還有別的解法嗎?
活動(dòng):教師引導(dǎo),去根號(hào)常常利用完全平方公式,有時(shí)平方差公式也可,同學(xué)們觀察兩個(gè)式子的特點(diǎn),具有對稱性,再考慮并交流討論,一個(gè)是“+”,一個(gè)是“-”,去掉一層根號(hào)后,相加正好抵消。同時(shí)借助平方差,又可去掉根號(hào),因此把兩個(gè)式子的和看成一個(gè)整體,兩邊平方即可,探討得另一種解法。
另解:利用整體思想,x=3+22+3-22,兩邊平方,得x2=3+22+3-22+2(3+22)(3-22)=6+232-(22)2=6+2=8,所以x=22.
點(diǎn)評:對雙重二次根式,特別是A±2B形式的式子,我們總能找到辦法將根號(hào)下面的式子化成一個(gè)完全平方式,問題迎刃而解,另外對A+2B±A-2B的式子,我們可以把它們看成一個(gè)整體利用完全平方公式和平方差公式去解。
變式訓(xùn)練
若a2-2a+1=a-1,求a的取值范圍。
解:因?yàn)閍2-2a+1=a-1,而a2-2a+1=(a-1)2=|a-1|=a-1,即a-1≥0,所以a≥1.
點(diǎn)評:利用方根的運(yùn)算性質(zhì)轉(zhuǎn)化為去絕對值符號(hào),是解題的關(guān)鍵。
知能訓(xùn)練
(教師用多媒體顯示在屏幕上)
1、以下說法正確的是( 。
A.正數(shù)的n次方根是一個(gè)正數(shù)
B.負(fù)數(shù)的n次方根是一個(gè)負(fù)數(shù)
C.0的n次方根是零
D.a的n次方根用na表示(以上n>1且n∈正整數(shù)集)
答案:C
2、化簡下列各式:
(1)664;(2)4(-3)2;(3)4x8;(4)6x6y3;(5)(x-y)2.
答案:(1)2;(2)3;(3)x2;(4)|x|y;(5)|x-y|。
3、計(jì)算7+40+7-40=__________.
解析:7+40+7-40
=(5)2+25?2+(2)2+(5)2-25?2+(2)2
=(5+2)2+(5-2)2
=5+2+5-2
=25.
答案:25
拓展提升
問題:nan=a與(na)n=a(n>1,n∈N)哪一個(gè)是恒等式,為什么?請舉例說明。
活動(dòng):組織學(xué)生結(jié)合前面的例題及其解答,進(jìn)行分析討論,解決這一問題要緊扣n次方根的定義。
通過歸納,得出問題結(jié)果,對a是正數(shù)和零,n為偶數(shù)時(shí),n為奇數(shù)時(shí)討論一下。再對a是負(fù)數(shù),n為偶數(shù)時(shí),n為奇數(shù)時(shí)討論一下,就可得到相應(yīng)的結(jié)論。
解:(1)(na)n=a(n>1,n∈N)。
如果xn=a(n>1,且n∈N)有意義,則無論n是奇數(shù)或偶數(shù),x=na一定是它的一個(gè)n次方根,所以(na)n=a恒成立。
例如:(43)4=3,(3-5)3=-5.
(2)nan=a|a|,當(dāng)n為奇數(shù),當(dāng)n為偶數(shù)。
當(dāng)n為奇數(shù)時(shí),a∈R,nan=a恒成立。
例如:525=2,5(-2)5=-2.
當(dāng)n為偶數(shù)時(shí),a∈R,an≥0,nan表示正的n次方根或0,所以如果a≥0,那么nan=a.例如434=3,40=0;如果a<0,那么nan=|a|=-a,如(-3)2=32=3,即(na)n=a(n>1,n∈N)是恒等式,nan=a(n>1,n∈N)是有條件的。
點(diǎn)評:實(shí)質(zhì)上是對n次方根的概念、性質(zhì)以及運(yùn)算性質(zhì)的深刻理解。
課堂小結(jié)
學(xué)生仔細(xì)交流討論后,在筆記上寫出本節(jié)課的學(xué)習(xí)收獲,教師用多媒體顯示在屏幕上。
1、如果xn=a,那么x叫a的n次方根,其中n>1且n∈正整數(shù)集。用式子na表示,式子na叫根式,其中a叫被開方數(shù),n叫根指數(shù)。
。1)當(dāng)n為偶數(shù)時(shí),a的n次方根有兩個(gè),是互為相反數(shù),正的n次方根用na表示,如果是負(fù)數(shù),負(fù)的n次方根用-na表示,正的n次方根與負(fù)的n次方根合并寫成±na(a>0)。
(2)n為奇數(shù)時(shí),正數(shù)的n次方根是一個(gè)正數(shù),負(fù)數(shù)的n次方根是一個(gè)負(fù)數(shù),這時(shí)a的n次方根用符號(hào)na表示。
(3)負(fù)數(shù)沒有偶次方根。0的任何次方根都是零。
2、掌握兩個(gè)公式:n為奇數(shù)時(shí),(na)n=a,n為偶數(shù)時(shí),nan=|a|=a,-a,a≥0,a<0.
作業(yè)
課本習(xí)題2.1A組 1.
補(bǔ)充作業(yè):
1、化簡下列各式:
(1)681;(2)15-32;(3)6a2b4.
解:(1)681=634=332=39;
(2)15-32=-1525=-32;
(3)6a2b4=6(|a|?b2)2=3|a|?b2.
2、若5
解析:因?yàn)?
答案:2a-13
3.5+26+5-26=__________.
解析:對雙重二次根式,我們覺得難以下筆,我們考慮只有在開方的前提下才可能解出,由此提示我們想辦法去掉一層根式,不難看出5+26=(3+2)2=3+2.
同理5-26=(3-2)2=3-2.
所以5+26+5-26=23.
答案:23
設(shè)計(jì)感想
學(xué)生已經(jīng)學(xué)習(xí)了數(shù)的平方根和立方根,根式的內(nèi)容是這些內(nèi)容的推廣,本節(jié)課由于方根和根式的概念和性質(zhì)難以理解,在引入根式的概念時(shí),要結(jié)合已學(xué)內(nèi)容,列舉具體實(shí)例,根式na的講解要分n是奇數(shù)和偶數(shù)兩種情況來進(jìn)行,每種情況又分a>0,a<0,a=0三種情況,并結(jié)合具體例子講解,因此設(shè)計(jì)了大量的類比和練習(xí)題目,要靈活處理這些題目,幫助學(xué)生加以理解,所以需要用多媒體信息技術(shù)服務(wù)教學(xué)。
第2課時(shí)
作者:郝云靜
導(dǎo)入新課
思路1.碳14測年法。原來宇宙射線在大氣層中能夠產(chǎn)生放射性碳14,并與氧結(jié)合成二氧化碳后進(jìn)入所有活組織,先為植物吸收,再為動(dòng)物吸收,只要植物和動(dòng)物生存著,它們就會(huì)不斷地吸收碳14在機(jī)體內(nèi)保持一定的水平。而當(dāng)有機(jī)體死亡后,即會(huì)停止吸收碳14,其組織內(nèi)的碳14便以約5 730年的半衰期開始衰變并消失。對于任何含碳物質(zhì)只要測定剩下的放射性碳14的含量,便可推斷其年代(半衰期:經(jīng)過一定的時(shí)間,變?yōu)樵瓉淼囊话耄。引出本?jié)課題:指數(shù)與指數(shù)冪的運(yùn)算之分?jǐn)?shù)指數(shù)冪。
思路2.同學(xué)們,我們在初中學(xué)習(xí)了整數(shù)指數(shù)冪及其運(yùn)算性質(zhì),那么整數(shù)指數(shù)冪是否可以推廣呢?答案是肯定的。這就是本節(jié)的主講內(nèi)容,教師板書本節(jié)課題——指數(shù)與指數(shù)冪的運(yùn)算之分?jǐn)?shù)指數(shù)冪。
推進(jìn)新課
新知探究
提出問題
(1)整數(shù)指數(shù)冪的運(yùn)算性質(zhì)是什么?
。2)觀察以下式子,并總結(jié)出規(guī)律:a>0 ,① ;
、赼8=(a4)2=a4= ,;
③4a12=4(a3)4=a3= ;
、2a10=2(a5)2=a5= 。
。3)利用(2)的規(guī)律,你能表示下列式子嗎?
, , , (x>0,m,n∈正整數(shù)集,且n>1)。
。4)你能用方根的意義來解釋(3)的式子嗎?
。5)你能推廣到一般的情形嗎?
活動(dòng):學(xué)生回顧初中學(xué)習(xí)的整數(shù)指數(shù)冪及運(yùn)算性質(zhì),仔細(xì)觀察,特別是每題的開始和最后兩步的指數(shù)之間的關(guān)系,教師引導(dǎo)學(xué)生體會(huì)方根的意義,用方根的意義加以解釋,指點(diǎn)啟發(fā)學(xué)生類比(2)的規(guī)律表示,借鑒(2)(3),我們把具體推廣到一般,對寫正確的同學(xué)及時(shí)表揚(yáng),其他學(xué)生鼓勵(lì)提示。
討論結(jié)果:(1)整數(shù)指數(shù)冪的運(yùn)算性質(zhì):an=a?a?a?…?a,a0=1(a≠0);00無意義;
a-n=1an(a≠0);am?an=am+n;(am)n=amn;(an)m=amn;(ab)n=anbn.
。2)①a2是a10的5次方根;②a4是a8的2次方根;③a3是a12的4次方根;④a5是a10的2次方根。實(shí)質(zhì)上①5a10= ,②a8= ,③4a12= ,④2a10= 結(jié)果的a的指數(shù)是2,4,3,5分別寫成了105,82,124,105,形式上變了,本質(zhì)沒變。
根據(jù)4個(gè)式子的最后結(jié)果可以總結(jié):當(dāng)根式的被開方數(shù)的指數(shù)能被根指數(shù)整除時(shí),根式可以寫成分?jǐn)?shù)作為指數(shù)的形式(分?jǐn)?shù)指數(shù)冪形式)。
。3)利用(2)的規(guī)律,453= ,375= ,5a7= ,nxm= 。
(4)53的四次方根是 ,75的三次方根是 ,a7的五次方根是 ,xm的n次方根是 。
結(jié)果表明方根的結(jié)果和分?jǐn)?shù)指數(shù)冪是相通的。
。5)如果a>0,那么am的n次方根可表示為nam= ,即 =nam(a>0,m,n∈正整數(shù)集,n>1)。
綜上所述,我們得到正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義,教師板書:
規(guī)定:正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是 =nam(a>0,m,n∈正整數(shù)集,n>1)。
提出問題
。1)負(fù)整數(shù)指數(shù)冪的意義是怎樣規(guī)定的?
。2)你能得出負(fù)分?jǐn)?shù)指數(shù)冪的意義嗎?
。3)你認(rèn)為應(yīng)怎樣規(guī)定零的分?jǐn)?shù)指數(shù)冪的意義?
。4)綜合上述,如何規(guī)定分?jǐn)?shù)指數(shù)冪的意義?
。5)分?jǐn)?shù)指數(shù)冪的意義中,為什么規(guī)定a>0,去掉這個(gè)規(guī)定會(huì)產(chǎn)生什么樣的后果?
(6)既然指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)是否也適用于有理數(shù)指數(shù)冪呢?
活動(dòng):學(xué)生回想初中學(xué)習(xí)的情形,結(jié)合 自己的學(xué)習(xí)體會(huì)回答,根據(jù)零的整數(shù)指數(shù)冪的意義和負(fù)整數(shù)指數(shù)冪的意義來類比,把正分?jǐn)?shù)指數(shù)冪的意義與負(fù)分?jǐn)?shù)指數(shù)冪的意義融合起來,與整數(shù)指數(shù)冪的運(yùn)算性質(zhì)類比可得有理數(shù)指數(shù)冪的運(yùn)算性質(zhì),教師在黑板上板書,學(xué)生合作交流,以具體的實(shí)例說明a>0的必要性,教師及時(shí)作出評價(jià)。
討論結(jié)果:(1)負(fù)整數(shù)指數(shù)冪的意義是:a-n=1an(a≠0),n∈N+。
(2)既然負(fù)整數(shù)指數(shù)冪的意義是這樣規(guī)定的,類比正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義可得正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義。
規(guī)定:正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是 = =1nam(a>0,m,n∈=N+,n>1)。
。3)規(guī)定:零的分?jǐn)?shù)指數(shù)冪的意義是:零的正分?jǐn)?shù)次冪等于零,零的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義。
。4)教師板書分?jǐn)?shù)指數(shù)冪的意義。分?jǐn)?shù)指數(shù)冪的意義就是:
正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是 =nam(a>0,m,n∈正整數(shù)集,n>1),正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是 = =1nam(a>0,m,n∈正整數(shù)集,n>1),零的正分?jǐn)?shù)次冪等于零,零的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義。
。5)若沒有a>0這個(gè)條件會(huì)怎樣呢?
如 =3-1=-1, =6(-1)2=1具有同樣意義的兩個(gè)式子出現(xiàn)了截然不同的結(jié)果,這只說明分?jǐn)?shù)指數(shù)冪在底數(shù)小于零時(shí)是無意義的。因此在把根式化成分?jǐn)?shù)指數(shù)時(shí),切記要使底數(shù)大于零,如無a>0的條件,比如式子3a2= ,同時(shí)負(fù)數(shù)開奇次方是有意義的,負(fù)數(shù)開奇次方時(shí),應(yīng)把負(fù)號(hào)移到根式的外邊,然后再按規(guī)定化成分?jǐn)?shù)指數(shù)冪,也就是說,負(fù)分?jǐn)?shù)指數(shù)冪在有意義的情況下總表示正數(shù),而不是負(fù)數(shù),負(fù)數(shù)只是出現(xiàn)在指數(shù)上。
。6)規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù)。
有理數(shù)指數(shù)冪的運(yùn)算性質(zhì):對任意的有理數(shù)r,s,均有下面的運(yùn)算性質(zhì):
、賏r?as=ar+s(a>0,r,s∈Q),②(ar)s=ars(a>0,r,s∈Q),③(a?b)r=arbr(a>0,b>0,r∈Q)。
我們利用分?jǐn)?shù)指數(shù)冪的意義和有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)可以解決一些問題,來看下面的例題。
應(yīng)用示例
例1 求值:(1) ;(2) ;(3)12-5;(4) 。
活動(dòng):教師引導(dǎo)學(xué)生考慮解題的方法,利用冪的運(yùn)算性質(zhì)計(jì)算出數(shù)值或化成最簡根式,根據(jù)題目要求,把底數(shù)寫成冪的形式,8寫成23,25寫成52,12寫成2-1,1681寫成234,利用有理數(shù)冪的運(yùn)算性質(zhì)可以解答,完成后,把自己的答案用投影儀展示出來。
解:(1) =22=4;
。2) =5-1=15;
(3)12-5=(2-1)-5=2-1×(-5)=32;
(4) =23-3=278.
點(diǎn)評:本例主要考查冪值運(yùn)算,要按規(guī)定來解。在進(jìn)行冪值運(yùn)算時(shí),要首先考慮轉(zhuǎn)化為指數(shù)運(yùn)算,而不是首先轉(zhuǎn)化為熟悉的根式運(yùn)算,如 =382=364=4.
例2 用分?jǐn)?shù)指數(shù)冪的形式表示下列各式。
a3?a;a2?3a2;a3a(a>0)。
活動(dòng):學(xué)生觀察、思考,根據(jù)解題的順序,把根式化為分?jǐn)?shù)指數(shù)冪,再由冪的運(yùn)算性質(zhì)來運(yùn)算,根式化為分?jǐn)?shù)指數(shù)冪時(shí),要由里往外依次進(jìn)行,把握好運(yùn)算性質(zhì)和順序,學(xué)生討論交流自己的解題步驟,教師評價(jià)學(xué)生的解題情況,鼓勵(lì)學(xué)生注意總結(jié)。
解:a3?a=a3? = ;
a2?3a2=a2? = ;
a3a= 。
點(diǎn)評:利用分?jǐn)?shù)指數(shù)冪的意義和有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)進(jìn)行根式運(yùn)算時(shí),其順序是先把根式化為分?jǐn)?shù)指數(shù) 冪,再由冪的運(yùn)算性質(zhì)來運(yùn)算。對于計(jì)算的結(jié)果,不強(qiáng)求統(tǒng)一用什么形式來表示,沒有特別要求,就用分?jǐn)?shù)指數(shù)冪的形式來表示,但結(jié)果不能既有分?jǐn)?shù)指數(shù)又有根式,也不能既有分母又有負(fù)指數(shù)。
例3 計(jì)算下列各式(式中字母都是正數(shù))。
。1) ;
。2) 。
活動(dòng):先由學(xué)生觀察以上兩個(gè)式子的特征,然后分析,四則運(yùn)算的順序是先算乘方,再算乘除,最后算加減,有括號(hào)的先算括號(hào)內(nèi)的,整數(shù)冪的運(yùn)算性質(zhì)及運(yùn)算規(guī)律擴(kuò)充到分?jǐn)?shù)指數(shù)冪后,其運(yùn)算順序仍符合我們以前的四則運(yùn)算順序,再解答,把自己的答案用投影儀展示出來,相互交流,其中要注意到(1)小題是單項(xiàng)式的乘除運(yùn)算,可以用單項(xiàng)式的乘除法運(yùn)算順序進(jìn)行,要注意符號(hào),第(2)小題是乘方運(yùn)算,可先按積的乘方計(jì)算,再按冪的乘方進(jìn)行計(jì)算,熟悉后可以簡化步驟。
解:(1)原式=[2×(-6)÷(-3)] =4ab0=4a;
。2) =m2n-3=m2n3.
點(diǎn)評:分?jǐn)?shù)指數(shù)冪不表示相同因式的積,而是根式的另一種寫法。有了分?jǐn)?shù)指數(shù)冪,就可把根式轉(zhuǎn)化成分?jǐn)?shù)指數(shù)冪的形式,用分?jǐn)?shù)指數(shù)冪的運(yùn)算法則進(jìn)行運(yùn)算了。
本例主要是指數(shù)冪的運(yùn)算法則的綜合考查和應(yīng)用。
變式訓(xùn)練
求值:(1)33?33?63;
(2)627m3125n64.
解:(1)33?33?63= =32=9;
(2)627m3125n64= =9m225n4=925m2n-4.
例4 計(jì)算下列各式:
。1)(325-125)÷425;
(2)a2a?3a2(a>0)。
活動(dòng):先由學(xué)生觀察以上兩個(gè)式子的特 征,然后分析,化為同底。利用分?jǐn)?shù)指數(shù)冪計(jì)算,在第(1)小題中,只含有根式,且不是同次根式,比較難計(jì)算,但把根式先化為分?jǐn)?shù)指數(shù)冪再計(jì)算,這樣就簡便多了,第(2)小題也是先把根式轉(zhuǎn)化為分?jǐn)?shù)指數(shù)冪后再由運(yùn)算法則計(jì)算,最后寫出解答。
解:(1)原式=
= =65-5;
(2)a2a?3a2= =6a5.
知能訓(xùn)練
課本本節(jié)練習(xí) 1,2,3
【補(bǔ)充練習(xí)】
教師用實(shí)物投影儀把題目投射到屏幕上讓學(xué)生解答,教師巡視,啟發(fā),對做得好的同學(xué)給予表揚(yáng)鼓勵(lì)。
1、(1)下列運(yùn)算中,正確的是( 。
A.a2?a3=a6 B.(-a2)3=(-a3)2
C.(a-1)0=0 D.(-a2)3=-a6
(2)下列各式①4(-4)2n,②4(-4)2n+1,③5a4,④4a5(各式的n∈N,a∈R)中,有意義的是( 。
A.①② B.①③ C.①②③④ D.①③④
(3)(34a6)2?(43a6)2等于( 。
A.a B.a2 C.a3 D.a4
。4)把根式-25(a-b)-2改寫成分?jǐn)?shù)指數(shù)冪的形式為( )
A. B.
C. D.
。5)化簡 的結(jié)果是( )
A.6a B.-a C.-9a D.9a
2、計(jì)算:(1) --17-2+ -3-1+(2-1)0=__________.
(2)設(shè)5x=4,5y=2,則52x-y=__________.
3、已知x+y=12,xy=9且x 答案:1.(1)D (2)B (3)B (4)A (5)C 2.(1)19 (2)8 3、解: 。 因?yàn)閤+y=12,xy=9,所以(x-y)2=(x+y)2-4xy=144-36=108=4×27. 又因?yàn)閤 所以原式= =12-6-63=-33. 拓展提升 1、化簡: 。 活動(dòng):學(xué)生觀察式子特點(diǎn),考慮x的指數(shù)之間的關(guān)系可以得到解題思路,應(yīng)對原式進(jìn)行因式分解,根據(jù)本題的特點(diǎn),注意到: x-1= -13= ; x+1= +13= ; 。 構(gòu)建解題思路教師適時(shí)啟發(fā)提示。 解: = = = = 。 點(diǎn)撥:解這類題目,要注意運(yùn)用以下公式,=a-b,=a± +b,=a±b. 2、已知 ,探究下列各式的值的求法。 (1)a+a-1;(2)a2+a-2;(3) 。 解:(1)將 ,兩邊平方,得a+a-1+2=9,即a+a-1=7; (2)將a+a-1=7兩邊平方,得a2+a-2+2=49,即a2+ a-2=47; 。3)由于 ,所以有 =a+a-1+1=8. 點(diǎn)撥:對“條件求值”問題,一定要弄清已知與未知的聯(lián)系,然后采取“整體代換”或“求值后代換”兩種方法求值。 課堂小結(jié) 活動(dòng):教師,本節(jié)課同學(xué)們有哪些收獲?請把你的學(xué)習(xí)收獲記錄在你的筆記本上,同學(xué)們之間相互交流。同時(shí)教師用投影儀顯示本堂課的知識(shí)要點(diǎn): 。1)分?jǐn)?shù)指數(shù)冪的意義就是:正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是 =nam(a>0,m,n∈正整數(shù)集,n>1),正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是 = =1nam(a>0,m,n∈正整數(shù)集,n>1),零的正分?jǐn)?shù)次冪等于零,零的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義。 (2)規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù)。 。3)有理數(shù)指數(shù)冪的運(yùn)算性質(zhì):對任意的有理數(shù)r,s,均有下面的運(yùn)算性質(zhì): 、賏r?as=ar+s(a>0,r,s∈Q),②(ar)s=ars(a>0,r,s∈Q),③(a?b)r=arbr(a>0,b>0,r∈Q)。 。4)說明兩點(diǎn): 、俜?jǐn)?shù)指數(shù)冪的意義是一種規(guī)定,我們前面所舉的例子只表明這種規(guī)定的合理性,其中沒有推出關(guān)系。 、谡麛(shù)指數(shù)冪的運(yùn)算性質(zhì)對任意的有理數(shù)指數(shù)冪也同樣適用。因而分?jǐn)?shù)指數(shù)冪與根式可以互化,也可以利用 =am來計(jì)算。 作業(yè) 課本習(xí)題2.1A組 2,4. 設(shè)計(jì)感想 本節(jié)課是分?jǐn)?shù)指數(shù)冪的意義的引出及應(yīng)用,分?jǐn)?shù)指數(shù)是指數(shù)概念的又一次擴(kuò)充,要讓學(xué)生反復(fù)理解分?jǐn)?shù)指數(shù)冪的意義,教學(xué)中可以通過根式與分?jǐn)?shù)指數(shù)冪的互化來鞏固加深對這一概念的理解,用觀察、歸納和類比的方法完成,由于是硬性的規(guī)定,沒有合理的解釋,因此多安排一些練習(xí),強(qiáng)化訓(xùn)練,鞏固知識(shí),要輔助以信息技術(shù)的手段來完成大容量的課堂教學(xué)任務(wù)。 第3課時(shí) 作者:鄭芳鳴 導(dǎo)入新課 思路1.同學(xué)們,既然我們把指數(shù)從正整數(shù)推廣到整數(shù),又從整數(shù)推廣到正分?jǐn)?shù)到負(fù)分?jǐn)?shù),這樣指數(shù)就推廣到有理數(shù),那么它是否也和數(shù)的推廣一樣,到底有沒有無理數(shù)指數(shù)冪呢?回顧數(shù)的擴(kuò)充過程,自然數(shù)到整數(shù),整數(shù)到分?jǐn)?shù)(有理數(shù)),有理數(shù)到實(shí)數(shù)。并且知道,在有理數(shù)到實(shí)數(shù)的擴(kuò)充過程中,增添的數(shù)是無理數(shù)。對無理數(shù)指數(shù)冪,也是這樣擴(kuò)充而來。既然如此,我們這節(jié)課的主要內(nèi)容是:教師板書本堂課的課題〔指數(shù)與指數(shù)冪的運(yùn)算(3)〕之無理數(shù)指數(shù)冪。 思路2.同學(xué)們,在初中我們學(xué)習(xí)了函數(shù)的知識(shí),對函數(shù)有了一個(gè)初步的了解,到了高中,我們又對函數(shù)的概念進(jìn)行了進(jìn)一步的學(xué)習(xí),有了更深的理解,我們僅僅學(xué)了幾種簡單的函數(shù),如一次函數(shù)、二次函數(shù)、正比例函數(shù)、反比例函數(shù)、三角函數(shù)等,這些遠(yuǎn)遠(yuǎn)不能滿足我們的需要,隨著科學(xué)的發(fā)展,社會(huì)的進(jìn)步,我們還要學(xué)習(xí)許多函數(shù),其中就有指數(shù)函數(shù),為了學(xué)習(xí)指數(shù)函數(shù)的知識(shí),我們必須學(xué)習(xí)實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì),為此,我們必須把指數(shù)冪從有理數(shù)指數(shù)冪擴(kuò)充到實(shí)數(shù)指數(shù)冪,因此我們本節(jié)課學(xué)習(xí):指數(shù)與指數(shù)冪的運(yùn)算(3)之無理數(shù)指數(shù)冪,教師板書本節(jié)課的課題。 推進(jìn)新課 新知探究 提出問題 。1)我們知道2=1.414 213 56…,那么1.41,1.414,1.414 2,1.414 21,…,是2的什么近似值?而1.42,1.415,1.414 3,1.414 22,…,是2的什么近似值? (2)多媒體顯示以下圖表:同學(xué)們從上面的兩個(gè)表中,能發(fā)現(xiàn)什么樣的規(guī)律? 2的過剩近似值 的近似值 1.5 11.180 339 89 1.42 9.829 635 328 1.415 9.750 851 808 1.414 3 9.739 872 62 1.414 22 9.738 618 643 1.414 214 9.738 524 602 1.414 213 6 9.738 518 332 1.414 213 57 9.738 517 862 1.414 213 563 9.738 517 752 … … 的近似值 2的不足近似值 9.518 269 694 1.4 9.672 669 973 1.41 9.735 171 039 1.414 9.738 305 174 1.414 2 9.738 461 907 1.414 21 9.738 508 928 1.414 213 9.738 516 765 1.414 213 5 9.738 517 705 1.414 213 56 9.738 517 736 1.414 213 562 … … 。3)你能給上述思想起個(gè)名字嗎? 。4)一個(gè)正數(shù)的無理數(shù)次冪到底是一個(gè)什么性質(zhì)的數(shù)呢?如 ,根據(jù)你學(xué)過的知識(shí),能作出判斷并合理地解釋嗎? 。5)借助上面的結(jié)論你能說出一般性的結(jié)論嗎? 活動(dòng):教師引導(dǎo),學(xué)生回憶,教師提問,學(xué)生回答,積極交流,及時(shí)評價(jià)學(xué)生,學(xué)生有困惑時(shí)加以解釋,可用多媒體顯示輔助內(nèi)容: 問題(1)從近似值的分類來考慮,一方面從大于2的方向,另一方面從小于2的方向。 問題(2)對圖表的觀察一方面從上往下看,再一方面從左向右看,注意其關(guān)聯(lián)。 問題(3)上述方法實(shí)際上是無限接近,最后是逼近。 問題(4)對問題給予大膽猜測,從數(shù)軸的觀點(diǎn)加以解釋。 問題(5)在(3)(4)的基礎(chǔ)上,推廣到一般的情形,即由特殊到一般。 討論結(jié)果:(1)1.41,1.414,1.414 2,1.414 21,…這些數(shù)都小于2,稱2的不足近似值,而1.42,1.415,1.414 3,1.414 22,…,這些數(shù)都大于2,稱2的過剩近似值。 。2)第一個(gè)表:從大于2的方向逼近2時(shí), 就從51.5,51.42,51.415,51.414 3,51.414 22,…,即大于 的方向逼近 。 第二個(gè)表:從小于2的方向逼近2時(shí), 就從51.4,51.41,51.414,51.414 2,51.414 21,…,即小于 的方向逼近 。 從另一角度來看這個(gè)問題,在數(shù)軸上近似地表示這些點(diǎn),數(shù)軸上的數(shù)字表明一方面 從51.4,51.41,51.414,51.414 2,51.414 21,…,即小于 的方向接近 ,而另一方面 從51.5,51.42,51.415,51.414 3,51.414 22,…,即大于 的方向接近 ,可以說從兩個(gè)方向無限地接近 ,即逼近 ,所以 是一串有理數(shù)指數(shù)冪51.4,51.41,51.414,51.414 2,51.414 21,…,和另一串有理數(shù)指數(shù)冪51.5,51.42,51.415,51.414 3,51.414 22,…,按上述變化規(guī)律變化的結(jié)果,事實(shí)上表示這些數(shù)的點(diǎn)從兩個(gè)方向向表示 的點(diǎn)靠近,但這個(gè)點(diǎn)一定在數(shù)軸上,由此我們可得到的結(jié)論是 一定是一個(gè)實(shí)數(shù),即51.4<51.41<51.414<51.414 2<51.414 21<…< <…<51.414 22<51.414 3<51.415<51.42<51.5. 充分表明 是一個(gè)實(shí)數(shù)。 (3)逼近思想,事實(shí)上里面含有極限的思想,這是以后要學(xué)的知識(shí)。 。4)根據(jù)(2)(3)我們可以推斷 是一個(gè)實(shí)數(shù),猜測一個(gè)正數(shù)的無理數(shù)次冪是一個(gè)實(shí)數(shù)。 。5)無理數(shù)指數(shù)冪的意義: 一般地,無理數(shù)指數(shù)冪aα(a>0,α是無理數(shù))是一個(gè)確定的實(shí)數(shù)。 也就是說無理數(shù)可以作為指數(shù),并且它的結(jié)果是一個(gè)實(shí)數(shù),這樣指數(shù)概念又一次得到推廣,在數(shù)的擴(kuò)充過程中,我們知道有理數(shù)和無理數(shù)統(tǒng)稱為實(shí)數(shù)。我們規(guī)定了無理數(shù)指數(shù)冪的意義,知道它是一個(gè)確定的實(shí)數(shù),結(jié)合前面的有理數(shù)指數(shù)冪,那么,指數(shù)冪就從有理數(shù)指數(shù)冪擴(kuò)充到實(shí)數(shù)指數(shù)冪。 提出問題 (1)為什么在規(guī)定無理數(shù)指數(shù)冪的意義時(shí),必須規(guī)定底數(shù)是正數(shù)? 。2)無理數(shù)指數(shù)冪的運(yùn)算法則是怎樣的?是否與有理數(shù)指數(shù)冪的運(yùn)算法則相通呢? (3)你能給出實(shí)數(shù)指數(shù)冪的運(yùn)算法則嗎? 活動(dòng):教師組織學(xué)生互助合作,交流探討,引導(dǎo)他們用反例說明問題,注意類比,歸納。 對問題(1)回顧我們學(xué)習(xí)分?jǐn)?shù)指數(shù)冪的意義時(shí)對底數(shù)的規(guī)定,舉例說明。 對問題(2)結(jié)合有理數(shù)指數(shù)冪的運(yùn)算法則,既然無理數(shù)指數(shù)冪aα(a>0,α是無理數(shù))是一個(gè)確定的實(shí)數(shù),那么無理數(shù)指數(shù)冪的運(yùn)算法則應(yīng)當(dāng)與有理數(shù)指數(shù)冪的運(yùn)算法則類似,并且相通。 對問題(3)有了有理數(shù)指數(shù)冪的運(yùn)算法則和無理數(shù)指數(shù)冪的運(yùn)算法則,實(shí)數(shù)的運(yùn)算法則自然就得到了。 討論結(jié)果:(1)底數(shù)大于零的必要性,若a=-1,那么aα是+1還是-1就無法確定了,這樣就造成混亂,規(guī)定了底數(shù)是正數(shù)后,無理數(shù)指數(shù)冪aα是一個(gè)確定的實(shí)數(shù),就不會(huì)再造成混亂。 。2)因?yàn)闊o理數(shù)指數(shù)冪是一個(gè)確定的實(shí)數(shù),所以能進(jìn)行指數(shù)的運(yùn)算,也能進(jìn)行冪的運(yùn)算,有理數(shù)指數(shù)冪的運(yùn)算性質(zhì),同樣也適用于無理數(shù)指數(shù)冪。類比有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)可以得到無理數(shù)指數(shù)冪的運(yùn)算法則: ①ar?as=ar+s(a>0,r,s都是無理數(shù))。 、冢╝r)s=ars(a>0,r,s都是無理數(shù))。 ③(a?b)r=arbr(a>0,b>0,r是無理數(shù))。 。3)指數(shù)冪擴(kuò)充到實(shí)數(shù)后,指數(shù)冪的運(yùn)算性質(zhì)也就推廣到了實(shí)數(shù)指數(shù)冪。 實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì): 對任意的實(shí)數(shù)r,s,均有下面的運(yùn)算性質(zhì): 、賏r?as=ar+s(a>0,r,s∈R)。 、(ar)s=ars(a>0,r,s∈R)。 ③(a?b)r=arbr(a>0,b>0,r∈R)。 應(yīng)用示例 例1 利用函數(shù)計(jì)算器計(jì)算。(精確到0.001) (1)0.32.1;(2)3.14-3;(3) ;(4) 。 活動(dòng):教師教會(huì)學(xué)生利用函數(shù)計(jì)算器計(jì)算,熟悉計(jì)算器的各鍵的功能,正確輸入各類數(shù),算出數(shù)值,對于(1),可先按底數(shù)0.3,再按xy鍵,再按冪指數(shù)2.1,最后按=,即可求得它的值; 對于(2),先按底數(shù)3.14,再按xy鍵,再按負(fù)號(hào)-鍵,再按3,最后按=即可; 對于(3),先按底數(shù)3.1,再按xy鍵,再按3÷4,最后按=即可; 對于(4),這種無理指數(shù)冪,可先按底數(shù)3,其次按xy鍵,再按 鍵,再按3,最后按=鍵。有時(shí)也可按2ndf或shift鍵,使用鍵上面的功能去運(yùn)算。 學(xué)生可以相互交流,挖掘計(jì)算器的用途。 解:(1)0.32.1≈0.080;(2)3.14-3≈0.032;(3) ≈2.336;(4) ≈6.705. 點(diǎn)評:熟練掌握用計(jì)算器計(jì)算冪的值的方法與步驟,感受現(xiàn)代技術(shù)的威力,逐步把自己融入現(xiàn)代信息社會(huì);用四舍五入法求近似值,若保留小數(shù)點(diǎn)后n位,只需看第(n+1)位能否進(jìn)位即可。 例2 求值或化簡。 (1)a-4b23ab2(a>0,b>0); 。2) (a>0,b>0); (3)5-26+7-43-6-42. 活動(dòng):學(xué)生觀察,思考,所謂化簡,即若能化為常數(shù)則化為常數(shù),若不能化為常數(shù)則應(yīng)使所化式子達(dá)到最簡,對既有分?jǐn)?shù)指數(shù)冪又有根式的式子,應(yīng)該把根式統(tǒng)一化為分?jǐn)?shù)指數(shù)冪的形式,便于運(yùn)算,教師有針對性地提示引導(dǎo),對(1)由里向外把根式化成分?jǐn)?shù)指數(shù)冪,要緊扣分?jǐn)?shù)指數(shù)冪的意義和運(yùn)算性質(zhì),對(2)既有分?jǐn)?shù)指數(shù)冪又有根式,應(yīng)當(dāng)統(tǒng)一起來,化為分?jǐn)?shù)指數(shù)冪,對(3)有多重根號(hào)的式子,應(yīng)先去根號(hào),這里是二次根式,被開方數(shù)應(yīng)湊完全平方,這樣,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并對學(xué)生作及時(shí)的評價(jià),注意總結(jié)解題的方法和規(guī)律。 解:(1)a-4b23ab2= =3b46a11 。 點(diǎn)評:根式的運(yùn)算常常化成冪的運(yùn)算進(jìn)行,計(jì)算結(jié)果如沒有特殊要求,就用根式的形式來表示。 教學(xué)目標(biāo): (1)了解坐標(biāo)法和解析幾何的意義,了解解析幾何的基本問題. (2)進(jìn)一步理解曲線的方程和方程的曲線. (3)初步掌握求曲線方程的方法. (4)通過本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問題和轉(zhuǎn)化的能力. 教學(xué)重點(diǎn)、難點(diǎn):求曲線的方程. 教學(xué)用具:計(jì)算機(jī). 教學(xué)方法:啟發(fā)引導(dǎo)法,討論法. 教學(xué)過程: 【引入】 1.提問:什么是曲線的方程和方程的曲線. 學(xué)生思考并回答.教師強(qiáng)調(diào). 2.坐標(biāo)法和解析幾何的意義、基本問題. 對于一個(gè)幾何問題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點(diǎn);用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標(biāo)法,這門科學(xué)稱為解析幾何.解析幾何的兩大基本問題就是: (1)根據(jù)已知條件,求出表示平面曲線的方程. (2)通過方程,研究平面曲線的性質(zhì). 事實(shí)上,在前邊所學(xué)的直線方程的理論中也有這樣兩個(gè)基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法. 【問題】 如何根據(jù)已知條件,求出曲線的方程. 【實(shí)例分析】 例1:設(shè)、兩點(diǎn)的坐標(biāo)是、(3,7),求線段的垂直平分線的方程. 首先由學(xué)生分析:根據(jù)直線方程的知識(shí),運(yùn)用點(diǎn)斜式即可解決. 解法一:易求線段的中點(diǎn)坐標(biāo)為(1,3), 由斜率關(guān)系可求得l的斜率為 于是有 即l的方程為 、 分析、引導(dǎo):上述問題是我們早就學(xué)過的,用點(diǎn)斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線的方程?根據(jù)是什么,有證明嗎? (通過教師引導(dǎo),是學(xué)生意識(shí)到這是以前沒有解決的問題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條). 證明:(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解. 設(shè)是線段的垂直平分線上任意一點(diǎn),則 即 將上式兩邊平方,整理得 這說明點(diǎn)的坐標(biāo)是方程的解. (2)以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn). 設(shè)點(diǎn)的坐標(biāo)是方程①的任意一解,則 到、的距離分別為 所以,即點(diǎn)在直線上. 綜合(1)、(2),①是所求直線的方程. 至此,證明完畢.回顧上述內(nèi)容我們會(huì)發(fā)現(xiàn)一個(gè)有趣的現(xiàn)象:在證明(1)曲線上的.點(diǎn)的坐標(biāo)都是這個(gè)方程的解中,設(shè)是線段的垂直平分線上任意一點(diǎn),最后得到式子,如果去掉腳標(biāo),這不就是所求方程嗎?可見,這個(gè)證明過程就表明一種求解過程,下面試試看: 解法二:設(shè)是線段的垂直平分線上任意一點(diǎn),也就是點(diǎn)屬于集合 由兩點(diǎn)間的距離公式,點(diǎn)所適合的條件可表示為 將上式兩邊平方,整理得 果然成功,當(dāng)然也不要忘了證明,即驗(yàn)證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點(diǎn)看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證. 這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點(diǎn)集與對應(yīng)的思想.因此是個(gè)好方法. 讓我們用這個(gè)方法試解如下問題: 例2:點(diǎn)與兩條互相垂直的直線的距離的積是常數(shù)求點(diǎn)的軌跡方程. 分析:這是一個(gè)純粹的幾何問題,連坐標(biāo)系都沒有.所以首先要建立坐標(biāo)系,顯然用已知中兩條互相垂直的直線作坐標(biāo)軸,建立直角坐標(biāo)系.然后仿照例1中的解法進(jìn)行求解. 求解過程略. 【概括總結(jié)】通過學(xué)生討論,師生共同總結(jié): 分析上面兩個(gè)例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟: 首先應(yīng)有坐標(biāo)系;其次設(shè)曲線上任意一點(diǎn);然后寫出表示曲線的點(diǎn)集;再代入坐標(biāo);最后整理出方程,并證明或修正.說得更準(zhǔn)確一點(diǎn)就是: (1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對例如表示曲線上任意一點(diǎn)的坐標(biāo); (2)寫出適合條件的點(diǎn)的集合 ; (3)用坐標(biāo)表示條件,列出方程; (4)化方程為最簡形式; (5)證明以化簡后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn). 一般情況下,求解過程已表明曲線上的點(diǎn)的坐標(biāo)都是方程的解;如果求解過程中的轉(zhuǎn)化都是等價(jià)的,那么逆推回去就說明以方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).所以,通常情況下證明可省略,不過特殊情況要說明. 上述五個(gè)步驟可簡記為:建系設(shè)點(diǎn);寫出集合;列方程;化簡;修正. 下面再看一個(gè)問題: 例3:已知一條曲線在軸的上方,它上面的每一點(diǎn)到點(diǎn)的距離減去它到軸的距離的差都是2,求這條曲線的方程. 【動(dòng)畫演示】用幾何畫板演示曲線生成的過程和形狀,在運(yùn)動(dòng)變化的過程中尋找關(guān)系. 解:設(shè)點(diǎn)是曲線上任意一點(diǎn),軸,垂足是(如圖2),那么點(diǎn)屬于集合 由距離公式,點(diǎn)適合的條件可表示為 、 將①式移項(xiàng)后再兩邊平方,得 化簡得 由題意,曲線在軸的上方,所以,雖然原點(diǎn)的坐標(biāo)(0,0)是這個(gè)方程的解,但不屬于已知曲線,所以曲線的方程應(yīng)為,它是關(guān)于軸對稱的拋物線,但不包括拋物線的頂點(diǎn),如圖2中所示. 【練習(xí)鞏固】 題目:在正三角形內(nèi)有一動(dòng)點(diǎn),已知到三個(gè)頂點(diǎn)的距離分別為、 、,且有,求點(diǎn)軌跡方程. 分析、略解:首先應(yīng)建立坐標(biāo)系,以正三角形一邊所在的直線為一個(gè)坐標(biāo)軸,這條邊的垂直平分線為另一個(gè)軸,建立直角坐標(biāo)系比較簡單,如圖3所示.設(shè)、的坐標(biāo)為、,則的坐標(biāo)為,的坐標(biāo)為. 根據(jù)條件,代入坐標(biāo)可得 化簡得 ① 由于題目中要求點(diǎn)在三角形內(nèi),所以,在結(jié)合①式可進(jìn)一步求出、的范圍,最后曲線方程可表示為 【小結(jié)】師生共同總結(jié): (1)解析幾何研究研究問題的方法是什么? (2)如何求曲線的方程? (3)請對求解曲線方程的五個(gè)步驟進(jìn)行評價(jià).各步驟的作用,哪步重要,哪步應(yīng)注意什么? 【作業(yè)】課本第72頁練習(xí)1,2,3; 一、什么是教學(xué)案例 教學(xué)案例是真實(shí)而又典型且含有問題的事件。簡單地說,一個(gè)教學(xué)案例就是一個(gè)包含有疑難問題的實(shí)際情境的描述,是一個(gè)教學(xué)實(shí)踐過程中的故事,描述的是教學(xué)過程中“意料之外,情理之中的事”。 這可以從以下幾個(gè)層次來理解: 教學(xué)案例是事件:教學(xué)案例是對教學(xué)過程中的一個(gè)實(shí)際情境的描述。它講述的是一個(gè)故事,敘述的是這個(gè)教學(xué)故事的產(chǎn)生、發(fā)展的歷程,它是對教學(xué)現(xiàn)象的動(dòng)態(tài)性的把握。 教學(xué)案例是含有問題的事件:事件只是案例的基本素材,并不是所有的教學(xué)事件都可以成為案例。能夠成為案例的事件,必須包含有問題或疑難情境在內(nèi),并且也可能包含有解決問題的方法在內(nèi)。正因?yàn)檫@一點(diǎn),案例才成為一種獨(dú)特的研究成果的表現(xiàn)形式。 案例是真實(shí)而又典型的事件:案例必須是有典型意義的,它必須能給讀者帶來一定的啟示和體會(huì)。案例與故事之間的根本區(qū)別是:故事是可以杜撰的,而案例是不能杜撰和抄襲的,它所反映的是真是發(fā)生的事件,是教學(xué)事件的真實(shí)再現(xiàn)。是對“當(dāng)前”課堂中真實(shí)發(fā)生的實(shí)踐情景的描述。它不能用“搖擺椅子上杜撰的事實(shí)來替代”,也不能從抽象的、概括化的理論中演繹的事實(shí)來替代。 二、如何進(jìn)行教學(xué)案例研究 教學(xué)案例是教師教學(xué)行為真實(shí)、典型的記錄,也是教師教學(xué)理念和教學(xué)思想的真實(shí)體現(xiàn)。因此它是教育教學(xué)研究的寶貴資源,也是教師之間交流的重要媒介。進(jìn)行教學(xué)案例的研究是教師不斷反思、改進(jìn)自己教學(xué)的一種方法,能促使教師更為深刻地認(rèn)識(shí)到自己工作中的重點(diǎn)和難點(diǎn)。這個(gè)過程就是教師自我教育和成長的過程。 那么如何進(jìn)行教學(xué)案例研究呢?一般情況下,案例研究的程序基本有以下兩個(gè)環(huán)節(jié):案例研究的準(zhǔn)備及實(shí)施、案例研究報(bào)告的撰寫與反思。 (一)案例研究的準(zhǔn)備與實(shí)施 1.研究主題的選擇 案例研究都要有研究的重點(diǎn)和主題,這個(gè)主題常與教學(xué)改革的核心理念、常見的疑難問題和困惑事件相關(guān),一般來說可以從教學(xué)的各個(gè)方面確定研究的主題,如從教師教學(xué)行為確定主題——教學(xué)材料的選擇、教學(xué)中的提問、教學(xué)媒體的使用、教學(xué)評價(jià)語言、課堂教學(xué)調(diào)控行為等;也可以從學(xué)生的學(xué)習(xí)方式確定主題——探究性學(xué)習(xí)、問題解決學(xué)習(xí)、合作學(xué)習(xí)、實(shí)踐性活動(dòng)等。另外從學(xué)科特點(diǎn)、教學(xué)內(nèi)容等都可以確定研究的主題。 研究者要了解當(dāng)前教學(xué)的大背景,教改的大方向,要熟悉相關(guān)的《課程標(biāo)準(zhǔn)》和有針對性地作一些理論準(zhǔn)備。還要通過有關(guān)的調(diào)查,搜集詳盡的材料(如閱讀教師的教學(xué)設(shè)計(jì),進(jìn)行訪談等),同時(shí)初步確定案例研究的方向、研究任務(wù),即初步確定案例的內(nèi)容是關(guān)于教學(xué)策略、學(xué)生行為或是教學(xué)技能的研究。 一般來說,案例研究主題的確定往往需要思考下面一些問題:即研究的事件是否對于自我發(fā)現(xiàn)更有潛力?選擇的事件對學(xué)生是否有較大的情感影響(心靈是否受到震撼)?關(guān)鍵事件再現(xiàn)了前人(或自己)過去成功的行為嗎?事件呈現(xiàn)的是一個(gè)你不能確定怎樣解決的問題?事件需要你做出困難的選擇嗎?事件使得你必須以一種感覺不熟悉的方式或是仍在思考的方式回答嗎?事件暗示一個(gè)與道德或道義上相關(guān)的問題嗎?研究的主題如果反映以上的一些內(nèi)容,那么這樣的案例研究在自我學(xué)習(xí)、內(nèi)省和深層次理解方面就可能更加富有成效。 高中數(shù)學(xué)教學(xué)案例研究的主題內(nèi)容主要集中在三方面:(1)學(xué)科特點(diǎn)的體現(xiàn):如數(shù)學(xué)思想方法的教學(xué)、數(shù)學(xué)思維品質(zhì)的培養(yǎng)、本質(zhì)屬性的抽象、數(shù)學(xué)結(jié)論的推廣等;(2)學(xué)生數(shù)學(xué)學(xué)習(xí)規(guī)律的探究:如數(shù)學(xué)學(xué)習(xí)習(xí)慣、解決問題的思維方式、獨(dú)立思考與合作學(xué)習(xí)等;(3)教師專業(yè)知識(shí)的提升:如數(shù)學(xué)板書與電子屏幕的展示對學(xué)生思維的影響、數(shù)學(xué)語言的訓(xùn)練對人們思維的影響、數(shù)學(xué)知識(shí)模式化教學(xué)的優(yōu)劣等。 2.案例研究的基本方法 (1)課堂觀察。觀察方法是指研究者按照一定的目的和計(jì)劃,在課堂教學(xué)活動(dòng)的'自然狀態(tài)下,用自己的感官和輔助工具對研究對象進(jìn)行觀察研究的一種方法。它可以是教師自己對教學(xué)對象——學(xué)生,在課堂活動(dòng)中的片斷進(jìn)行觀察,也可以由其他教師來實(shí)施觀察,這兩種觀察的目的都是為了掌握課堂教學(xué)中的第一手資料。課堂觀察方法不限于用肉眼觀察、耳聽手記,還可利用各種工具如照相、錄音、攝像等作為輔助觀察的手段,以提高觀察的效果。對觀察的資料,可以逐字逐句整理成課堂教學(xué)實(shí)錄、教學(xué)程序表、提問技巧水平檢核表、提問行為類型頻次表、課堂教學(xué)時(shí)間分配表等,以便以后繼續(xù)分析案例提供翔實(shí)的原始材料。 (2)訪談與調(diào)查。對一些課堂教學(xué)不能觀察到的師生內(nèi)心活動(dòng),如教師教學(xué)的目的、教學(xué)程序的意圖、教學(xué)手段的運(yùn)用以及教學(xué)達(dá)標(biāo)的成效等一些需要進(jìn)一步了解的問題,可以通過與執(zhí)教教師的交談以及和學(xué)生的座談,以豐富和充實(shí)課堂教學(xué)觀察的材料;對學(xué)生在課堂教學(xué)活動(dòng)中回答問題的心理狀態(tài)、解題思路等問題,也可以在課后做一些問卷調(diào)查;對學(xué)生達(dá)標(biāo)的成度、效度,也可以作一些測試調(diào)查。從這些訪談、調(diào)查的材料中,再分析課堂教學(xué)的現(xiàn)象,不難發(fā)現(xiàn)造成各種課堂現(xiàn)象與教師教學(xué)行為之間的因果關(guān)系,然后再具體尋找在哪個(gè)教學(xué)環(huán)節(jié)中出現(xiàn)問題,從中提煉出解決問題的對策。 (3)文獻(xiàn)分析。文獻(xiàn)分析是通過查閱文獻(xiàn)資料,從過去和現(xiàn)在的有關(guān)研究成果中受到啟發(fā),從中找到課堂教學(xué)現(xiàn)象的理論依據(jù),從而增強(qiáng)案例分析的說服力。當(dāng)然,對廣大第一線教師而言,這里所運(yùn)用的文獻(xiàn)分析方法,并不是為了論證新教育理論,也不是去歸納教育的宏觀現(xiàn)象,而是通過有關(guān)教育理論文獻(xiàn)的查閱,去進(jìn)一步解讀課堂教學(xué)的活動(dòng),挖掘案例中的教育思想。如在數(shù)學(xué)教學(xué)中,我們常常通過學(xué)生的動(dòng)手操作來獲得有關(guān)的數(shù)學(xué)概念、法則與公式,那么,為什么要這樣做呢?就可以帶著問題,查閱、分析有關(guān)文獻(xiàn)資料,從學(xué)習(xí)中提高研究者自身的理論水平。 (二)案例研究報(bào)告的撰寫 1.常見的案例報(bào)告格式 撰寫教學(xué)案例,結(jié)構(gòu)可以靈活多樣,并非要千篇一律、一個(gè)模式,而是可以有不同的表現(xiàn)形式,如“案例背景——案例描述——案例分析”、“案例過程——案例反思”、“課例——問題——分析”、“主題與背景——情景描述——問題討論——詮釋與研究”等。當(dāng)前,國內(nèi)外課堂教學(xué)案例編寫的格式有多種多樣。但不管何種編寫格式,它們都有兩個(gè)共同的特點(diǎn):一是對案例的客觀描述;二是對案例中所述問題、關(guān)鍵教學(xué)事件等的分析。 下面介紹兩種常用的案例編寫的格式: (1)“描述+分析”式 此格式的特點(diǎn)是將整個(gè)案例分為兩大部分,前半部分主要為描述課堂教學(xué)活動(dòng)的情景,后半部分主要針對情景中的一個(gè)問題進(jìn)行理論分析并獲得結(jié)論。案例的描述一般是把課堂教學(xué)活動(dòng)中的某一片斷像講故事一樣原原本本地、具體生動(dòng)地描繪出來。描述的形式可以是一串問答式的課堂對話,也可以概括式地?cái)⑹,主要是提供一個(gè)或一連串課堂教學(xué)疑難的問題,并把教育理論、教育思想隱藏在描述之中。案例的分析部分是針對描述的情景發(fā)表個(gè)人或多人的感受,同時(shí)加以理論的分析與說明。分析方法可以是對描述中提出的一個(gè)問題,從幾個(gè)方面加以分析:也可以是對描述中的幾個(gè)問題,集中從一個(gè)方面加以分析。分析的目的是要從描述的情景中提煉問題的本質(zhì),講述理論的解釋,明確正確的方法,最終獲得對關(guān)鍵教學(xué)事件的正確把握。 (2)“背景+描述+問題+詮釋”式 此格式是一種要求比較高的編寫格式,而且,它在實(shí)際教學(xué)中的作用也更大。通常它將整個(gè)案例分為四個(gè)部分: A.主題與背景 主題是關(guān)鍵教學(xué)事件中所反映的案例主要觀點(diǎn),也是整篇案例的核心思想。背景主要敘述案例發(fā)生的地點(diǎn)、時(shí)間、人物的一些基本情況。當(dāng)然,這部分的內(nèi)容不宜很長,只需提綱挈領(lǐng)敘述清楚即可。 B.情景描述 與“描述+分析”式中的描述相同,主要突出主題所反映的課堂教學(xué)活動(dòng)。 C.問題討論 這是根據(jù)主題要求與情景描述,進(jìn)行的分析、歸納、總結(jié)與提煉,包括學(xué)科知識(shí)的要點(diǎn)、教學(xué)法和情景特點(diǎn)以及案例的說明與注意事項(xiàng)。這部分內(nèi)容主要是為案例教學(xué)服務(wù)的,目的是提高教師的認(rèn)識(shí)水平與學(xué)生主動(dòng)學(xué)習(xí)的能力。不同的教學(xué)觀念,不同的教學(xué)手段,所提出的問題也不同。對案例中所提出的主題以及情景描述中提出的問題闡述自己的見解。 D.詮釋與研究 這部分主要是用教育理論對案例情景作多角度的解讀。它包括對課堂教學(xué)行為的技術(shù)資料、課堂教學(xué)實(shí)錄以及教學(xué)活動(dòng)背后的故事等作理論上的分析。例如,在課堂教學(xué)中,我們常看到這樣的現(xiàn)象,課堂教學(xué)的效果高于預(yù)期的目標(biāo),反之教師期望的目標(biāo)學(xué)生沒有達(dá)到或有所偏離,教學(xué)內(nèi)容呈現(xiàn)的先后與學(xué)生理解的程度、教學(xué)方法運(yùn)用與學(xué)生內(nèi)在動(dòng)機(jī)的激發(fā)等環(huán)節(jié)存在著矛盾,這些事件的背后,必然隱含著豐富的教育思想。所以,通過詮釋,挖掘這些事件背后的內(nèi)在思想,揭示其教育規(guī)律就顯得十分的必要。 2.案例報(bào)告撰寫的關(guān)鍵 (1)掌握四個(gè)原則。要寫好教學(xué)案例,除了平時(shí)多積累素材,學(xué)習(xí)他人的案例作品以提高寫作技巧外,還應(yīng)把握以下四點(diǎn): A.主題性原則:要有捕捉關(guān)鍵教學(xué)事件的意識(shí),以此確定案例研究的主題。為此要注意了解新的課程改革的動(dòng)向、把握適合時(shí)代要求的數(shù)學(xué)教育方式、明確學(xué)生數(shù)學(xué)學(xué)習(xí)的難點(diǎn)和重點(diǎn),尋找數(shù)學(xué)教師專業(yè)發(fā)展的途徑與規(guī)律。報(bào)告圍繞主題進(jìn)行情景描述和獲得解決問題的策略。這種描述不是簡單的教學(xué)活動(dòng)實(shí)錄,要反映事件發(fā)生的過程,重點(diǎn)描述反映關(guān)鍵教學(xué)事件的變化和戲劇化的情境,猶如記敘文寫作,突出主題,詳寫重點(diǎn),雕刻高潮。 案例鮮明的主題通常關(guān)系到教學(xué)的核心理念、常見問題、處理方法等等,可以說,主題就是案例的靈魂。而主題的最佳表現(xiàn)形式就是文題直接體現(xiàn)主題。因此,設(shè)計(jì)主題就要有新意、有時(shí)代感,通俗地說就是與眾不同,要有獨(dú)特見解、獨(dú)家發(fā)現(xiàn)。來源于實(shí)踐的教學(xué)案例并非都有同等價(jià)值,關(guān)鍵要看撰寫者對實(shí)踐的發(fā)展與理論的升華程度,包括對題目的推敲。如有的教學(xué)案例重點(diǎn)描述了有戲劇性的情節(jié),用了“細(xì)節(jié)決定成敗”的題目,給人耳目一新,一下子揪住了讀者的心。再如,一些有創(chuàng)意的題目《“導(dǎo)之有方”方能“導(dǎo)之有效”》、《跳出數(shù)學(xué)教數(shù)學(xué)》、《在數(shù)學(xué)的疑難處悟成長》、《捕捉資源因勢利導(dǎo)》等等,讓人一看題目就有閱讀的欲望。實(shí)踐證明,在寫作案例時(shí),選擇有感悟、有新意的內(nèi)容,在明確主題,恰當(dāng)擬題后再動(dòng)筆,才能寫出高質(zhì)量的案例。 B.理論性原則:解決問題的策略中應(yīng)當(dāng)蘊(yùn)含一定的教育基本原理和教育思想。實(shí)際是將自己對教育理念以及教育基本原理的理解滲透于描述的字里行間,比如學(xué)生做了什么,參與程度,投入程度如何,教師如何引導(dǎo)點(diǎn)撥,師生心理、行為變化情況等,無不體現(xiàn)教師的教學(xué)思想和教育基本原理。 C.敘事性原則:案例報(bào)告的書寫方式是敘事式,它不同于論述式。敘事方式必須以課堂教學(xué)生動(dòng)的事實(shí)為主要情節(jié),可以夾敘夾議,也可以選擇情景片段,可以是一節(jié)課中的情景,也可以是圍繞一個(gè)主題的幾節(jié)課的情景片段。 D.學(xué)科性原則:數(shù)學(xué)案例報(bào)告一定要體現(xiàn)學(xué)科的特征,要有較深刻的理性思考,要反映數(shù)學(xué)的基本思想與方法,要符合課程標(biāo)準(zhǔn),滿足教材內(nèi)容的呈現(xiàn)方法,積極培養(yǎng)良好的思維習(xí)慣。就是撰寫者的教育思想和教育理念在教學(xué)實(shí)踐中具體體現(xiàn)。 (2)用好四種表述。教學(xué)案例的表述方法很多,可以歸納為以下四種方法: A.故事式陳述法:就是教學(xué)全程或某一精彩教學(xué)片段實(shí)錄,包括教師和學(xué)生的一言一行。陳述時(shí),根據(jù)操作程序作一點(diǎn)“簡評”,最后作“總評”。 B.以案說理:對教學(xué)過程進(jìn)行陳述時(shí),舍去與文題不相關(guān)或不重要的部分,并強(qiáng)化與主題相關(guān)的重要情節(jié),尤其是引發(fā)高潮的關(guān)鍵行為,然后有較長篇幅的理性思考。 C.圖表展示法:用圖表進(jìn)行統(tǒng)計(jì)的形式體現(xiàn)撰寫者的教育思想,給人以一目了然的感覺,幫助讀者迅速了解撰寫者的寫作意圖,是常用的一種案例撰寫方法。比如,描述學(xué)生的參與人數(shù),投入程度,解決問題的質(zhì)量等多個(gè)問題,都可以在一張或數(shù)張圖表上用百分比或個(gè)(次)數(shù)進(jìn)行統(tǒng)計(jì)。在每一張圖表后,應(yīng)有一段“分析”或“結(jié)論”,將撰寫者的教學(xué)理念進(jìn)行理性闡述,亦可在圖表展示后,總的提出自己對案例的分析和建議。 D.分析討論法:在撰寫時(shí),應(yīng)汲取分析討論中最精彩的部分做深入、細(xì)致的全面記錄,最后撰寫者還必須對討論情況做一分析,或提出一些值得今后進(jìn)一步思考的問題。 3.優(yōu)秀案例的特征 (1)時(shí)代性:一個(gè)好的案例描述的是現(xiàn)實(shí)生活場景——案例的敘述要把事件置于一個(gè)時(shí)空框架之中,應(yīng)該以關(guān)注今天所面臨的疑難問題為著眼點(diǎn),至少應(yīng)該是近年發(fā)生的事情,展示的整個(gè)事實(shí)材料應(yīng)該與整個(gè)時(shí)代及教學(xué)背景相照應(yīng),這樣的案例讀者更愿意接觸。一個(gè)好的案例可以使讀者有身臨其境的感覺,并對案例所涉及的人產(chǎn)生移情作用。 (2)真實(shí)性:一個(gè)好的案例應(yīng)該包括從案例所反映的對象那里引述的材料——案例寫作必須持一種客觀的態(tài)度,因此可引述一些口頭的或書面的、正式的或非正式的材料,如對話、筆記、信函等,以增強(qiáng)案例的真實(shí)感和可讀性。重要的事實(shí)性材料應(yīng)注明資料來源。 (3)適用性:一個(gè)好的案例需要針對面臨的疑難問題提出解決辦法——案例不能只是提出問題,它必須提出解決問題的主要思路、具體措施,并包含著解決問題的詳細(xì)過程,這應(yīng)該是案例寫作的重點(diǎn)。如果一個(gè)問題可以提出多種解決辦法的話,那么最為適宜的方案,就應(yīng)該是與特定的背景材料相關(guān)最密切的那一個(gè)。如果有包治百病、普遍適用的解決問題的辦法,那么案例這種形式就不必要存在了。 (4)反思性:一個(gè)好的案例需要有對已經(jīng)做出的解決問題的決策的評價(jià)——評價(jià)是為了給新的決策提供參考點(diǎn)?稍诎咐拈_頭或結(jié)尾寫下案例作者對自己解決問題策略的評論,以點(diǎn)明案例的基本論點(diǎn)及其價(jià)值。 三、案例研究過程中需注意的問題 1.選材面過窄。從內(nèi)容上看,多數(shù)案例是關(guān)于課堂教學(xué)甚至局限于一節(jié)課的研究,往往不能說明問題,或者在一節(jié)課中,也只會(huì)從簡單的對話分析問題,做不到全方位、多角度。這說明教師對教學(xué)情境的豐富性、復(fù)雜性和聯(lián)系性認(rèn)識(shí)不夠。 2.缺乏典型性。有的案例對教學(xué)實(shí)踐沒有挖掘與反思,隨意摘取一些教學(xué)片段泛泛而談、人云亦云,沒有實(shí)用價(jià)值。不能夠通過對某一事件現(xiàn)象的分析、處理、詮釋,達(dá)到舉一反三的效果,這樣的案例對他人沒什么借鑒作用。 3.主題不明確。主要體現(xiàn)為: (1)主題渙散。有的案例象記流水帳,沒有根據(jù)需要進(jìn)行恰當(dāng)?shù)娜∩幔床怀鲎髡咭从、探討什么問題,缺乏指導(dǎo)性、創(chuàng)新性和參考性。 (2)定題過于隨意。有的案例直接用案例研究依據(jù)的文題為題目,如《“三角函數(shù)”教學(xué)案例》、《“拋物線”教學(xué)案例》等,題目不鮮明、不形象,影響讀者的選讀和案例的傳播。 4.結(jié)構(gòu)不合理。案例作為一種文體,有它自己的寫作結(jié)構(gòu),只有優(yōu)化案例的結(jié)構(gòu),才能增強(qiáng)案例的可讀性和指導(dǎo)性。如寫成一般的教學(xué)設(shè)計(jì),一般包括“備課思路、教學(xué)目標(biāo)、教學(xué)重點(diǎn)、教學(xué)方法、課前準(zhǔn)備、教學(xué)內(nèi)容、教學(xué)過程”等內(nèi)容;寫成教學(xué)實(shí)錄,把一堂課從頭到尾詳盡地記錄下來,再寫上作者的看法;重記錄輕分析,過程描述多,評析少等等。沒有創(chuàng)新,平淡無趣,看不出案例研究和反映的問題。 5.描述與分析脫節(jié)。有的案例描述與分析矛盾,讓人不知所云;有時(shí)反映的是一種觀點(diǎn),分析闡明的是另一種觀點(diǎn),雖然不矛盾,但聯(lián)系不緊密;有的分析中熱衷于抄錄教育理論的一些條條,脫離案例描述的事件而空談理論,顯得空泛無物。 【使用說明】 1、復(fù)習(xí)教材P124-P127頁,40分鐘時(shí)間完成預(yù)習(xí)學(xué)案 2、有余力的學(xué)生可在完成探究案中的部分內(nèi)容。 【學(xué)習(xí)目標(biāo)】 知識(shí)與技能:理解兩角差的余弦公式的推導(dǎo)過程及其結(jié)構(gòu)特征并能靈活運(yùn)用。 過程與方法:應(yīng)用已學(xué)知識(shí)和方法思考問題,分析問題,解決問題的能力。 情感態(tài)度價(jià)值觀: 通過公式推導(dǎo)引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)規(guī)律,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和學(xué)習(xí)數(shù)學(xué)的興趣。 !局攸c(diǎn)】通過探索得到兩角差的余弦公式以及公式的靈活運(yùn)用 【難點(diǎn)】兩角差余弦公式的推導(dǎo)過程 預(yù)習(xí)自學(xué)案 一、知識(shí)鏈接 1、 寫出 的`三角函數(shù)線 : 2、 向量 , 的數(shù)量積,①定義: 、谧鴺(biāo)運(yùn)算法則: 3、 , ,那么 是否等于 呢? 下面我們就探討兩角差的余弦公式 二、教材導(dǎo)讀 1、、兩角差的余弦公式的推導(dǎo)思路 如圖,建立單位圓O 。1)利用單位圓上的三角函數(shù)線 設(shè) 則 又OM=OB+BM =OB+CP =OA_____ +AP_____ = 從而得到兩角差的余弦公式: ____________________________________ (2)利用兩點(diǎn)間距離公式 如圖,角 的終邊與單位圓交于A( ) 角 的終邊與單位圓交于B( ) 角 的終邊與單位圓交于P( ) 點(diǎn)T( ) AB與PT關(guān)系如何? 從而得到兩角差的余弦公式: ____________________________________ (3) 利用平面向量的知識(shí) 用 表示向量 ,=( , ) =( , ) 則 。 = 設(shè) 與 的夾角為 、佼(dāng) 時(shí): = 從而得出 、诋(dāng) 時(shí)顯然此時(shí) 已經(jīng)不是向量 的夾角,在 范圍內(nèi),是向量夾角的補(bǔ)角。我們設(shè)夾角為 ,則 + = 此時(shí) = 從而得出 2、兩角差的余弦公式 ____________________________ 三、預(yù)習(xí)檢測 1、 利用余弦公式計(jì)算 的值。 2、 怎樣求 的值 你的疑惑是什么? ________________________________________________________ ______________________________________________________ 探究案 例1. 利用差角余弦公式求 的值。 例2.已知 , 是第三象限角,求 的值。 訓(xùn)練案 一、 基礎(chǔ)訓(xùn)練題 1、 2、 3、 二、綜合題 教學(xué)目的: 。1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法 。2)使學(xué)生初步了解“屬于”關(guān)系的意義 。3)使學(xué)生初步了解有限集、無限集、空集的意義 教學(xué)重點(diǎn):集合的基本概念及表示方法 教學(xué)難點(diǎn):運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合 授課類型:新授課 課時(shí)安排:1課時(shí) 教 具:多媒體、實(shí)物投影儀 內(nèi)容分析: 集合是中學(xué)數(shù)學(xué)的一個(gè)重要的基本概念 在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進(jìn)一步應(yīng)用集合的語言表述一些問題 例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點(diǎn)集 至于邏輯,可以說,從開始學(xué)習(xí)數(shù)學(xué)就離不開對邏輯知識(shí)的掌握和運(yùn)用,基本的邏輯知識(shí)在日常生活、學(xué)習(xí)、工作中,也是認(rèn)識(shí)問題、研究問題不可缺少的工具 這些可以幫助學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的`意義,也是本章學(xué)習(xí)的基礎(chǔ)把集合的初步知識(shí)與簡易邏輯知識(shí)安排在高中數(shù)學(xué)的最開始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識(shí)與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ) 例如,下一章講函數(shù)的概念與性質(zhì),就離不開集合與邏輯。 本節(jié)首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對集合的概念作了說明 然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子。 這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念 學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義 本節(jié)課的教學(xué)重點(diǎn)是集合的基本概念集合是集合論中的原始的、不定義的概念 在開始接觸集合的概念時(shí),主要還是通過實(shí)例,對概念有一個(gè)初步認(rèn)識(shí) 教科書給出的“一般地,某些指定的對象集在一起就成為一個(gè)集合,也簡稱集 ”這句話,只是對集合概念的描述性說明。 教學(xué)過程: 一、復(fù)習(xí)引入: 1、簡介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù); 2、教材中的章頭引言; 3、集合論的創(chuàng)始人——康托爾(德國數(shù)學(xué)家)(見附錄); 4.“物以類聚”,“人以群分”; 5.教材中例子(P4) 二、講解新課: 閱讀教材第一部分,問題如下: 。1)有那些概念?是如何定義的? 。2)有那些符號(hào)?是如何表示的? 。3)集合中元素的特性是什么? 。ㄒ唬┘系挠嘘P(guān)概念: 由一些數(shù)、一些點(diǎn)、一些圖形、一些整式、一些物體、一些人組成的。我們說,每一組對象的全體形成一個(gè)集合,或者說,某些指定的對象集在一起就成為一個(gè)集合,也簡稱集。集合中的每個(gè)對象叫做這個(gè)集合的元素。 定義:一般地,某些指定的對象集在一起就成為一個(gè)集合. 1、集合的概念 。1)集合:某些指定的對象集在一起就形成一個(gè)集合(簡稱集) 。2)元素:集合中每個(gè)對象叫做這個(gè)集合的元素 2、常用數(shù)集及記法 (1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合 記作N,(2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集 記作N*或N+ (3)整數(shù)集:全體整數(shù)的集合 記作Z ,(4)有理數(shù)集:全體有理數(shù)的集合 記作Q ,(5)實(shí)數(shù)集:全體實(shí)數(shù)的集合 記作R 注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0 。2)非負(fù)整數(shù)集內(nèi)排除0的集 記作N*或N+ Q、Z、R等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z* 3、元素對于集合的隸屬關(guān)系 。1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A 。2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作 4、集合中元素的特性 。1)確定性:按照明確的判斷標(biāo)準(zhǔn)給定一個(gè)元素或者在這個(gè)集合里,或者不在,不能模棱兩可 。2)互異性:集合中的元素沒有重復(fù) 。3)無序性:集合中的元素沒有一定的順序(通常用正常的順序?qū)懗觯?/p> 5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……元素通常用小寫的拉丁字母表示,如a、b、c、p、q…… ⑵“∈”的開口方向,不能把a(bǔ)∈A顛倒過來寫 三、練習(xí)題: 1、教材P5練習(xí)1、2 2、下列各組對象能確定一個(gè)集合嗎? 。1)所有很大的實(shí)數(shù) (不確定) 。2)好心的人 (不確定) 。3)1,2,2,3,4,5.(有重復(fù)) 3、設(shè)a,b是非零實(shí)數(shù),那么 可能取的值組成集合的元素是_—2,0,2__ 4、由實(shí)數(shù)x,-x,|x|, 所組成的集合,最多含( A ) 。ˋ)2個(gè)元素 (B)3個(gè)元素 (C)4個(gè)元素 (D)5個(gè)元素 5、設(shè)集合G中的元素是所有形如a+b (a∈Z, b∈Z)的數(shù),求證: 。1) 當(dāng)x∈N時(shí), x∈G; 。2) 若x∈G,y∈G,則x+y∈G,而 不一定屬于集合G 證明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,則x= x+0* = a+b ∈G,即x∈G 證明(2):∵x∈G,y∈G,∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z) ∴x+y=( a+b )+( c+d )=(a+c)+(b+d) ∵a∈Z, b∈Z,c∈Z, d∈Z ∴(a+c) ∈Z, (b+d) ∈Z ∴x+y =(a+c)+(b+d) ∈G,又∵ =且 不一定都是整數(shù),∴ = 不一定屬于集合G 四、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容: 1、集合的有關(guān)概念:(集合、元素、屬于、不屬于) 2、集合元素的性質(zhì):確定性,互異性,無序性 3、常用數(shù)集的定義及記法 教學(xué)準(zhǔn)備 教學(xué)目標(biāo) 1、數(shù)學(xué)知識(shí):掌握等比數(shù)列的概念,通項(xiàng)公式,及其有關(guān)性質(zhì); 2、數(shù)學(xué)能力:通過等差數(shù)列和等比數(shù)列的類比學(xué)習(xí),培養(yǎng)學(xué)生類比歸納的能力; 歸納——猜想——證明的數(shù)學(xué)研究方法; 3、數(shù)學(xué)思想:培養(yǎng)學(xué)生分類討論,函數(shù)的數(shù)學(xué)思想。 教學(xué)重難點(diǎn) 重點(diǎn):等比數(shù)列的概念及其通項(xiàng)公式,如何通過類比利用等差數(shù)列學(xué)習(xí)等比數(shù)列; 難點(diǎn):等比數(shù)列的性質(zhì)的探索過程。 教學(xué)過程 教學(xué)過程: 1、問題引入: 前面我們已經(jīng)研究了一類特殊的數(shù)列——等差數(shù)列。 問題1:滿足什么條件的數(shù)列是等差數(shù)列?如何確定一個(gè)等差數(shù)列? 。▽W(xué)生口述,并投影):如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列。 要想確定一個(gè)等差數(shù)列,只要知道它的首項(xiàng)a1和公差d。 已知等差數(shù)列的首項(xiàng)a1和d,那么等差數(shù)列的通項(xiàng)公式為:(板書)an=a1+(n-1)d。 師:事實(shí)上,等差數(shù)列的關(guān)鍵是一個(gè)“差”字,即如果一個(gè)數(shù)列,從第2項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列。 。ǖ谝淮晤惐龋╊愃频,我們提出這樣一個(gè)問題。 問題2:如果一個(gè)數(shù)列,從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的……等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做……數(shù)列。 。ㄟ@里以填空的形式引導(dǎo)學(xué)生發(fā)揮自己的想法,對于“和”與“積”的情況,可以利用具體的例子予以說明:如果一個(gè)數(shù)列,從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的“和”(或“積”)等于同一個(gè)常數(shù)的話,這個(gè)數(shù)列是一個(gè)各項(xiàng)重復(fù)出現(xiàn)的“周期數(shù)列”,而與等差數(shù)列最相似的是“比”為同一個(gè)常數(shù)的情況。而這個(gè)數(shù)列就是我們今天要研究的等比數(shù)列了。) 2、新課: 1)等比數(shù)列的定義:如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等比數(shù)列。這個(gè)常數(shù)叫做公比。 師:這就牽涉到等比數(shù)列的通項(xiàng)公式問題,回憶一下等差數(shù)列的通項(xiàng)公式是怎樣得到的?類似于等差數(shù)列,要想確定一個(gè)等比數(shù)列的通項(xiàng)公式,要知道什么? 師生共同簡要回顧等差數(shù)列的通項(xiàng)公式推導(dǎo)的方法:累加法和迭代法。 公式的推導(dǎo):(師生共同完成) 若設(shè)等比數(shù)列的公比為q和首項(xiàng)為a1,則有: 方法一:(累乘法) 3)等比數(shù)列的性質(zhì): 下面我們一起來研究一下等比數(shù)列的性質(zhì) 通過上面的研究,我們發(fā)現(xiàn)等比數(shù)列和等差數(shù)列之間似乎有著相似的地方,這為我們研究等比數(shù)列的性質(zhì)提供了一條思路:我們可以利用等差數(shù)列的性質(zhì),通過類比得到等比數(shù)列的性質(zhì)。 問題4:如果{an}是一個(gè)等差數(shù)列,它有哪些性質(zhì)? (根據(jù)學(xué)生實(shí)際情況,可引導(dǎo)學(xué)生通過具體例子,尋找規(guī)律,如: 3、例題鞏固: 例1、一個(gè)等比數(shù)列的第二項(xiàng)是2,第三項(xiàng)與第四項(xiàng)的和是12,求它的第八項(xiàng)的值。 答案:1458或128。 例2、正項(xiàng)等比數(shù)列{an}中,a6·a15+a9·a12=30,則log15a1a2a3…a20=_10____. 例3、已知一個(gè)等差數(shù)列:2,4,6,8,10,12,14,16,……,2n,……,能否在這個(gè)數(shù)列中取出一些項(xiàng)組成一個(gè)新的數(shù)列{cn},使得{cn}是一個(gè)公比為2的等比數(shù)列,若能請指出{cn}中的第k項(xiàng)是等差數(shù)列中的第幾項(xiàng)? 。ū绢}為開放題,沒有唯一的答案,如對于{cn}:2,4,8,16,……,2n,……,則ck=2k=2×2k-1,所以{cn}中的第k項(xiàng)是等差數(shù)列中的第2k-1項(xiàng)。關(guān)鍵是對通項(xiàng)公式的理解) 1、小結(jié): 今天我們主要學(xué)習(xí)了有關(guān)等比數(shù)列的概念、通項(xiàng)公式、以及它的性質(zhì),通過今天的學(xué)習(xí) 我們不僅學(xué)到了關(guān)于等比數(shù)列的有關(guān)知識(shí),更重要的是我們學(xué)會(huì)了由類比——猜想——證明的科學(xué)思維的過程。 2、作業(yè): P129:1,2,3 思考題:在等差數(shù)列:2,4,6,8,10,12,14,16,……,2n,……,中取出一些項(xiàng):6,12,24,48,……,組成一個(gè)新的數(shù)列{cn},{cn}是一個(gè)公比為2的等比數(shù)列,請指出{cn}中的第k項(xiàng)是等差數(shù)列中的第幾項(xiàng)? 教學(xué)設(shè)計(jì)說明: 1、教學(xué)目標(biāo)和重難點(diǎn):首先作為等比數(shù)列的第一節(jié)課,對于等比數(shù)列的概念、通項(xiàng)公式及其性質(zhì)是學(xué)生接下來學(xué)習(xí)等比數(shù)列的基礎(chǔ),是必須要落實(shí)的;其次,數(shù)學(xué)教學(xué)除了要傳授知識(shí),更重要的是傳授科學(xué)的研究方法,等比數(shù)列是在等差數(shù)列之后學(xué)習(xí)的因此對等比數(shù)列的學(xué)習(xí)必然要和等差數(shù)列結(jié)合起來,通過等比數(shù)列和等差數(shù)列的類比學(xué)習(xí),對培養(yǎng)學(xué)生類比——猜想——證明的科學(xué)研究方法是有利的。這也就成了本節(jié)課的重點(diǎn)。 2、教學(xué)設(shè)計(jì)過程:本節(jié)課主要從以下幾個(gè)方面展開: 1)通過復(fù)習(xí)等差數(shù)列的定義,類比得出等比數(shù)列的定義; 2)等比數(shù)列的通項(xiàng)公式的.推導(dǎo); 3)等比數(shù)列的性質(zhì); 有意識(shí)的引導(dǎo)學(xué)生復(fù)習(xí)等差數(shù)列的定義及其通項(xiàng)公式的探求思路,一方面使學(xué)生回顧舊 知識(shí),另一方面使學(xué)生通過聯(lián)想,為類比地探索等比數(shù)列的定義、通項(xiàng)公式奠定基礎(chǔ)。 在類比得到等比數(shù)列的定義之后,再對幾個(gè)具體的數(shù)列進(jìn)行鑒別,旨在遵循“特殊——一般——特殊”的認(rèn)識(shí)規(guī)律,使學(xué)生體會(huì)觀察、類比、歸納等合情推理方法的應(yīng)用。培養(yǎng)學(xué)生應(yīng)用知識(shí)的能力。 在得到等比數(shù)列的定義之后,探索等比數(shù)列的通項(xiàng)公式又是一個(gè)重點(diǎn)。這里通過問題3的設(shè)計(jì),使學(xué)生產(chǎn)生不得不考慮通項(xiàng)公式的心理傾向,造成學(xué)生認(rèn)知上的沖突,從而使學(xué)生主動(dòng)完成對知識(shí)的接受。 通過等差數(shù)列和等比數(shù)列的通項(xiàng)公式的比較使學(xué)生初步體會(huì)到等差和等比的相似性,為下面類比學(xué)習(xí)等比數(shù)列的性質(zhì),做好鋪墊。 等比性質(zhì)的研究是本節(jié)課的高潮,通過類比 關(guān)于例題設(shè)計(jì):重知識(shí)的應(yīng)用,具有開放性,為使學(xué)生更好的掌握本節(jié)課的內(nèi)容。 教學(xué)目標(biāo) 1、明確等差數(shù)列的定義。 2、掌握等差數(shù)列的通項(xiàng)公式,會(huì)解決知道中的三個(gè),求另外一個(gè)的問題 3、培養(yǎng)學(xué)生觀察、歸納能力。 教學(xué)重點(diǎn) 1、 等差數(shù)列的概念; 2、 等差數(shù)列的通項(xiàng)公式 教學(xué)難點(diǎn) 等差數(shù)列“等差”特點(diǎn)的理解、把握和應(yīng)用 教具準(zhǔn)備 投影片1張 教學(xué)過程 (I)復(fù)習(xí)回顧 師:上兩節(jié)課我們共同學(xué)習(xí)了數(shù)列的定義及給出數(shù)列的兩種方法通項(xiàng)公式和遞推公式。這兩個(gè)公式從不同的角度反映數(shù)列的`特點(diǎn),下面看一些例子。(放投影片) (Ⅱ)講授新課 師:看這些數(shù)列有什么共同的特點(diǎn)? 1,2,3,4,5,6; ① 10,8,6,4,2,…; ② 生:積極思考,找上述數(shù)列共同特點(diǎn)。 對于數(shù)列①(1≤n≤6);(2≤n≤6) 對于數(shù)列②-2n(n≥1)(n≥2) 對于數(shù)列③(n≥1)(n≥2) 共同特點(diǎn):從第2項(xiàng)起,第一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù)。 師:也就是說,這些數(shù)列均具有相鄰兩項(xiàng)之差“相等”的特點(diǎn)。具有這種特點(diǎn)的數(shù)列,我們把它叫做等差數(shù)。 一、定義: 等差數(shù)列:一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與空的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。 如:上述3個(gè)數(shù)列都是等差數(shù)列,它們的公差依次是1,-2, 。 二、等差數(shù)列的通項(xiàng)公式 師:等差數(shù)列定義是由一數(shù)列相鄰兩項(xiàng)之間關(guān)系而得。若一等差數(shù)列的首項(xiàng)是,公差是d,則據(jù)其定義可得: 若將這n-1個(gè)等式相加,則可得: 即:即:即:…… 由此可得:師:看來,若已知一數(shù)列為等差數(shù)列,則只要知其首項(xiàng)和公差d,便可求得其通項(xiàng)。 如數(shù)列①(1≤n≤6) 數(shù)列②:(n≥1) 數(shù)列③:(n≥1) 由上述關(guān)系還可得:即:則:=如:三、例題講解 例1:(1)求等差數(shù)列8,5,2…的第20項(xiàng) (2)-401是不是等差數(shù)列-5,-9,-13…的項(xiàng)?如果是,是第幾項(xiàng)? 解:(1)由n=20,得(2)由得數(shù)列通項(xiàng)公式為:由題意可知,本題是要回答是否存在正整數(shù)n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個(gè)數(shù)列的第100項(xiàng)。 (Ⅲ)課堂練習(xí) 生:(口答)課本P118練習(xí)3 。〞婢毩(xí))課本P117練習(xí)1 師:組織學(xué)生自評練習(xí)(同桌討論) (Ⅳ)課時(shí)小結(jié) 師:本節(jié)主要內(nèi)容為:①等差數(shù)列定義。 即(n≥2) 、诘炔顢(shù)列通項(xiàng)公式 (n≥1) 推導(dǎo)出公式: (V)課后作業(yè) 一、課本P118習(xí)題3.2 1,2 二、1.預(yù)習(xí)內(nèi)容:課本P116例2P117例4 2、預(yù)習(xí)提綱: 、偃绾螒(yīng)用等差數(shù)列的定義及通項(xiàng)公式解決一些相關(guān)問題? 、诘炔顢(shù)列有哪些性質(zhì)? 一、教學(xué)目標(biāo) 1、知識(shí)與能力目標(biāo) 、偈箤W(xué)生理解數(shù)列極限的概念和描述性定義。 ②使學(xué)生會(huì)判斷一些簡單數(shù)列的極限,了解數(shù)列極限的“e—N"定義,能利用逐步分析的方法證明一些數(shù)列的極限。 、弁ㄟ^觀察運(yùn)動(dòng)和變化的過程,歸納總結(jié)數(shù)列與其極限的特定關(guān)系,提高學(xué)生的數(shù)學(xué)概括能力和抽象思維能力。 2、過程與方法目標(biāo) 培養(yǎng)學(xué)生的極限的思想方法和獨(dú)立學(xué)習(xí)的能力。 3、情感、態(tài)度、價(jià)值觀目標(biāo) 使學(xué)生初步認(rèn)識(shí)有限與無限、近似與精確、量變與質(zhì)變的辯證關(guān)系,培養(yǎng)學(xué)生的辯證唯物主義觀點(diǎn)。 二、教學(xué)重點(diǎn)和難點(diǎn) 教學(xué)重點(diǎn):數(shù)列極限的概念和定義。 教學(xué)難點(diǎn):數(shù)列極限的“ε―N”定義的理解。 三、教學(xué)對象分析 這節(jié)課是數(shù)列極限的第一節(jié)課,足學(xué)生學(xué)習(xí)極限的入門課,對于學(xué)生來說是一個(gè)全新的內(nèi)容,學(xué)生的思維正處于由經(jīng)驗(yàn)型抽象思維向理論型抽象思維過渡階段,在《立體幾何》內(nèi)容求球的表面積和體積時(shí)對極限思想已有接觸,而學(xué)生在以往的數(shù)學(xué)學(xué)習(xí)中主要接觸的是關(guān)于“有限”的問題,很少涉及“無限”的問題。極限這一抽象概念能夠使他們做基于直觀的理解,并引導(dǎo)他們作出描述性定義“當(dāng)n無限增大時(shí),數(shù)列{an}中的項(xiàng)an無限趨近于常數(shù)A,也就是an與A的差的絕對值無限趨近于0”,并能用這個(gè)定義判斷一些簡單數(shù)列的極限。但要使他們在一節(jié)課內(nèi)掌握“ε—N”語言求極限要求過高。因此不宜講得太難,能夠通過具體的幾個(gè)例子,歸納研究一些簡單的數(shù)列的極限。使學(xué)生理解極限的基本概念,認(rèn)識(shí)什么叫做數(shù)列的極限以及數(shù)列極限的定義即可。 四、教學(xué)策略及教法設(shè)計(jì) 本課是采用啟發(fā)式講授教學(xué)法,通過多媒體課件演示及學(xué)生討論的方法進(jìn)行教學(xué)。通過學(xué)生比較熟悉的一個(gè)實(shí)際問題入手,引起學(xué)生的注意,激發(fā)學(xué)生的'學(xué)習(xí)興趣。然后通過具體的兩個(gè)比較簡單的數(shù)列,運(yùn)用多媒體課件演示向?qū)W生展示了數(shù)列中的各項(xiàng)隨著項(xiàng)數(shù)的增大,無限地趨向于某個(gè)常數(shù)的過程,讓學(xué)生在觀察的基礎(chǔ)上討論總結(jié)出這兩個(gè)數(shù)列的特征,從而得出數(shù)列極限的一個(gè)描述性定義。再在教師的引導(dǎo)下分析數(shù)列極限的各種不同情況。從而對數(shù)列極限有了直觀上的認(rèn)識(shí),接著讓學(xué)生根據(jù)數(shù)列中各項(xiàng)的情況判斷一些簡單的數(shù)列的極限。從而達(dá)到深化定義的效果。最后進(jìn)行練習(xí)鞏固,通過這樣的一個(gè)完整的教學(xué)過程,由觀察到分析、由定量到定性,由直觀到抽象,并借助于多媒體課件的演示,使得學(xué)生逐步地了解極限這個(gè)新的概念,為下節(jié)課的極限的運(yùn)算及應(yīng)用做準(zhǔn)備,為以后學(xué)習(xí)高等數(shù)學(xué)知識(shí)打下基礎(chǔ)。在整個(gè)教學(xué)過程中注意突出重點(diǎn),突破難點(diǎn),達(dá)到教學(xué)目標(biāo)的要求。 五、教學(xué)過程 1、創(chuàng)設(shè)情境 課件展示創(chuàng)設(shè)情境動(dòng)畫。 今天我們將要學(xué)習(xí)一個(gè)很重要的新的知識(shí)。 情境 。1)我國古代數(shù)學(xué)家劉徽于公元263年創(chuàng)立“割圓術(shù)”,“割之彌細(xì),所失彌少。割之又割,以至不可割,則與圓周合體而無所失矣”。 情境 。2)我國古代哲學(xué)家莊周所著的《莊子·天下篇》引用過一句話:一尺之棰,日取其半,萬世不竭。也就是說拿一根木棒,將它切成一半,拿其中一半來再切成一半,得到四分之一,再切成一半,就得到了八分之?如此下去,無限次地切,每次都切一半,問是否會(huì)切完? 大家都知道,這是不可能切完的,但是每次切了以后,木棒都比原來的少了一半,也就是說木棒的長度越來越短,但永遠(yuǎn)不會(huì)變成零。從而引出極限的概念。 2、定義探究 展示定義探索(一)動(dòng)畫演示。 問題1:請觀察以下無窮數(shù)列,當(dāng)n無限增大時(shí),a,I的變化趨勢有什么特點(diǎn)? 。1)1/2,2/3,3/4,n/n—1 (2)0.9,0.99,0.999,0.9999,1—1/10n 問題2:觀察課件演示,請分析以上兩個(gè)數(shù)列隨項(xiàng)數(shù)n的增大項(xiàng)有那些特點(diǎn)? 師生一起歸納總結(jié)出以下結(jié)論:數(shù)列(1)項(xiàng)數(shù)n無限增大時(shí),項(xiàng)無限趨近于1;數(shù)列(2)項(xiàng)數(shù)n無限增大時(shí),項(xiàng)無限趨近于1。 那么就把1叫數(shù)列(1)的極限,1叫數(shù)列(2)的極限。這兩個(gè)數(shù)列只是形式不同,它們都是隨項(xiàng)數(shù)n的無限增大,項(xiàng)無限趨近于某一確定常數(shù),這個(gè)常數(shù)叫做這個(gè)數(shù)列的極限。 那么,什么叫數(shù)列的極限呢?對于無窮數(shù)列an,如果當(dāng)n無限增大時(shí),an無限趨向于某一個(gè)常數(shù)A,則稱A是數(shù)列an的極限。 提出問題3:怎樣用數(shù)學(xué)語言來定量描述呢?怎樣用數(shù)學(xué)語言來描述上述數(shù)列的變化趨勢? 展示定義探索(二)動(dòng)畫演示。 師生共同總結(jié)發(fā)現(xiàn)在數(shù)軸上兩點(diǎn)間距離越小,項(xiàng)與1越趨近,因此可以借助兩點(diǎn)間距離無限小的方式來描述項(xiàng)無限趨近常數(shù)。無論預(yù)先指定多么小的正數(shù)e,如取e=O—1,總能在數(shù)列中找到一項(xiàng)am,使得an項(xiàng)后面的所有項(xiàng)與1的差的絕對值都小于ε,若取£=0.0001,則第6項(xiàng)后面的所有項(xiàng)與1的差的絕對值都小于ε,即1是數(shù)列(1)的極限。最后,師生共同總結(jié)出數(shù)列的極限定義中應(yīng)包含哪量(用這些量來描述數(shù)列1的極限)。 數(shù)列的極限為:對于任意的ε>0,如果總存在自然數(shù)N,當(dāng)n>N時(shí),不等式|an—A|n的極限。 課件可以實(shí)現(xiàn)任意輸入一個(gè)n值,可以計(jì)算出相應(yīng)的數(shù)列第n項(xiàng)的值,并且動(dòng)畫演示數(shù)列的變化過程。如圖1所示是課件運(yùn)行時(shí)的一個(gè)畫面。 定義探索動(dòng)畫(二)課件可以實(shí)現(xiàn)任意輸入一個(gè)n值,可以計(jì)算出相應(yīng)的數(shù)列第n項(xiàng)的值和Ian一1I的值,并且動(dòng)畫演示出第an項(xiàng)和1之間的距離。如圖2所示是課件運(yùn)行時(shí)的一個(gè)畫面。 3、知識(shí)應(yīng)用 這里舉了3道例題,與學(xué)生一塊思考,一起分析作答。 例1、已知數(shù)列: 1,—1/2,1/3,—1/4,1/5,(—1)n+11/n,(1)計(jì)算an—0(2)第幾項(xiàng)后面的所有項(xiàng)與0的差的絕對值都小于0.017都小于任意指定的正數(shù)。 (3)確定這個(gè)數(shù)列的極限。 例2、已知數(shù)列: 已知數(shù)列:3/2,9/4,15/8,2+(—1/2)n。 猜測這個(gè)數(shù)列有無極限,如果有,應(yīng)該是什么數(shù)?并求出從第幾項(xiàng)開始,各項(xiàng)與這個(gè)極限的差都小于0.1,從第幾項(xiàng)開始,各項(xiàng)與這個(gè)極限的差都小于0.017 例3、求常數(shù)數(shù)列一7,一7,一7,一7,的極限。 4、知識(shí)小結(jié) 這節(jié)課我們研究了數(shù)列極限的概念,對數(shù)列極限有了初步的認(rèn)識(shí)。數(shù)列極限研究的是無限變化的趨勢,而通過對數(shù)列極限定義的探討,我們看到這一過程又是通過有限來把握的,有限與無限、近似與精確、量變與質(zhì)變之間的辯證關(guān)系在這里得到了充分的體現(xiàn)。 課后練習(xí): (1)判斷下列數(shù)列是否有極限,如果有的話請求出它的極限值。①an=4n+l/n;②an=4—(1/3)m;③an=(—1)n/3n;④aan=—2;⑤an=n;⑥an=(—1)n。 。2)課本練習(xí)1,2。 5、探究性問題 設(shè)計(jì)研究性學(xué)習(xí)的思考題。 提出問題: 芝諾悖論:阿基里斯是《荷馬史詩》中的善跑英雄。奔跑中的阿基里斯永遠(yuǎn)也無法超過在他前面慢慢爬行的烏龜,因?yàn)楫?dāng)阿基里斯到達(dá)烏龜?shù)钠鹋茳c(diǎn)時(shí),烏龜已經(jīng)走在前面一小段路了,阿基里斯又必須趕過這一小段路,而烏龜又向前走了。這樣,阿基里斯可無限接近它,但不能追到它。假定阿基里斯跑步的速度是烏龜速度的10倍,阿基里斯與烏龜賽跑的路程是1公里。如果讓烏龜先跑0.1公里,當(dāng)阿基里斯追到O。1公里的地方,烏龜又向前跑了0.01公里。當(dāng)阿基里斯追到0.01公里的地方,烏龜又向前跑了0.001公里這樣一直追下去,阿基里斯能追上烏龜嗎? 這里是研究性學(xué)習(xí)內(nèi)容,以學(xué)生感興趣的悖論作為課后作業(yè),鞏固本節(jié)所學(xué)內(nèi)容,進(jìn)一步提高了學(xué)生學(xué)習(xí)數(shù)列的極限的興趣。同時(shí)也為學(xué)生創(chuàng)設(shè)了課下交流與討論的情境,逐步培養(yǎng)學(xué)生相互合作、交流和討論的習(xí)慣,使學(xué)生感受到了數(shù)學(xué)來源于生活,又服務(wù)于生活的實(shí)質(zhì),逐步養(yǎng)成用數(shù)學(xué)的知識(shí)去解決生活中遇到的實(shí)際問題的習(xí)慣。 教學(xué)準(zhǔn)備 教學(xué)目標(biāo) 數(shù)列求和的綜合應(yīng)用 教學(xué)重難點(diǎn) 數(shù)列求和的綜合應(yīng)用 教學(xué)過程 典例分析 3、數(shù)列{an}的前n項(xiàng)和Sn=n2-7n-8,(1)求{an}的通項(xiàng)公式 (2)求{|an|}的前n項(xiàng)和Tn 4、等差數(shù)列{an}的公差為,S100=145,則a1+a3+a5+…+a99= 5、已知方程(x2-2x+m)(x2-2x+n)=0的四個(gè)根組成一個(gè)首項(xiàng)為的等差數(shù)列,則|m-n|= 6、數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12 (1)求{an}的通項(xiàng)公式 。2)令bn=anxn,求數(shù)列{bn}前n項(xiàng)和公式 7、四數(shù)中前三個(gè)數(shù)成等比數(shù)列,后三個(gè)數(shù)成等差數(shù)列,首末兩項(xiàng)之和為21,中間兩項(xiàng)之和為18,求此四個(gè)數(shù) 8、在等差數(shù)列{an}中,a1=20,前n項(xiàng)和為Sn,且S10=S15,求當(dāng)n為何值時(shí),Sn有最大值,并求出它的`最大值 。已知數(shù)列{an},an∈N,Sn=(an+2)2 。1)求證{an}是等差數(shù)列 。2)若bn=an-30,求數(shù)列{bn}前n項(xiàng)的最小值 0、已知f(x)=x2-2(n+1)x+n2+5n-7(n∈N) (1)設(shè)f(x)的圖象的頂點(diǎn)的橫坐標(biāo)構(gòu)成數(shù)列{an},求證數(shù)列{an}是等差數(shù)列 (2設(shè)f(x)的圖象的頂點(diǎn)到x軸的距離構(gòu)成數(shù)列{dn},求數(shù)列{dn}的前n項(xiàng)和sn. 11、購買一件售價(jià)為5000元的商品,采用分期付款的辦法,每期付款數(shù)相同,購買后1個(gè)月第1次付款,再過1個(gè)月第2次付款,如此下去,共付款5次后還清,如果按月利率0.8%,每月利息按復(fù)利計(jì)算(上月利息要計(jì)入下月本金),那么每期應(yīng)付款多少?(精確到1元) 12、某商品在最近100天內(nèi)的價(jià)格f(t)與時(shí)間t的 函數(shù)關(guān)系式是f(t)=銷售量g(t)與時(shí)間t的函數(shù)關(guān)系是g(t)=-t/3+109/3(0≤t≤100) 求這種商品的日銷售額的最大值 注:對于分段函數(shù)型的應(yīng)用題,應(yīng)注意對變量x的取值區(qū)間的討論;求函數(shù)的最大值,應(yīng)分別求出函數(shù)在各段中的最大值,通過比較,確定最大值 【教學(xué)目標(biāo)】 1、知識(shí)與技能 。1)理解等差數(shù)列的定義,會(huì)應(yīng)用定義判斷一個(gè)數(shù)列是否是等差數(shù)列: 。2)賬務(wù)等差數(shù)列的通項(xiàng)公式及其推導(dǎo)過程: 。3)會(huì)應(yīng)用等差數(shù)列通項(xiàng)公式解決簡單問題。 2、過程與方法 在定義的理解和通項(xiàng)公式的推導(dǎo)、應(yīng)用過程中,培養(yǎng)學(xué)生的觀察、分析、歸納能力和嚴(yán)密的邏輯思維的能力,體驗(yàn)從特殊到一般,一般到特殊的認(rèn)知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。 3、情感、態(tài)度與價(jià)值觀 通過教師指導(dǎo)下學(xué)生的自主學(xué)習(xí)、相互交流和探索活動(dòng),培養(yǎng)學(xué)生主動(dòng)探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到成功的喜悅。在解決問題的過程中,使學(xué)生養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好習(xí)慣。 【教學(xué)重點(diǎn)】 、俚炔顢(shù)列的概念; 、诘炔顢(shù)列的通項(xiàng)公式 【教學(xué)難點(diǎn)】 、倮斫獾炔顢(shù)列“等差”的特點(diǎn)及通項(xiàng)公式的含義; 、诘炔顢(shù)列的通項(xiàng)公式的推導(dǎo)過程。 【學(xué)情分析】 我所教學(xué)的學(xué)生是我校高一(7)班的學(xué)生(平行班學(xué)生),經(jīng)過一年的高中數(shù)學(xué)學(xué)習(xí),大部分學(xué)生知識(shí)經(jīng)驗(yàn)已較為豐富,他們的智力發(fā)展已到了形式運(yùn)演階段,具備了較強(qiáng)的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時(shí)注重從具體的生活實(shí)例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的'心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展。 【設(shè)計(jì)思路】 1、教法 ①啟發(fā)引導(dǎo)法:這種方法有利于學(xué)生對知識(shí)進(jìn)行主動(dòng)建構(gòu);有利于突出重點(diǎn),突破難點(diǎn);有利于調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,發(fā)揮其創(chuàng)造性。 、诜纸M討論法:有利于學(xué)生進(jìn)行交流,及時(shí)發(fā)現(xiàn)問題,解決問題,調(diào)動(dòng)學(xué)生的積極性。 、壑v練結(jié)合法:可以及時(shí)鞏固所學(xué)內(nèi)容,抓住重點(diǎn),突破難點(diǎn)。 2、學(xué)法 引導(dǎo)學(xué)生首先從三個(gè)現(xiàn)實(shí)問題(數(shù)數(shù)問題、水庫水位問題、儲(chǔ)蓄問題)概括出數(shù)組特點(diǎn)并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點(diǎn),推導(dǎo)出等差數(shù)列的通項(xiàng)公式;可以對各種能力的同學(xué)引導(dǎo)認(rèn)識(shí)多元的推導(dǎo)思維方法。 【教學(xué)過程】 一、創(chuàng)設(shè)情境,引入新課 1、從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么? 2、水庫管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚。如果一個(gè)水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進(jìn)行清理工作的那天,水庫每天的水位(單位:m)組成一個(gè)什么數(shù)列? 3、我國現(xiàn)行儲(chǔ)蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計(jì)算下一期的利息。按照單利計(jì)算本利和的公式是:本利和=本金×(1+利率×存期)。按活期存入10000元錢,年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個(gè)什么數(shù)列? 教師:以上三個(gè)問題中的數(shù)蘊(yùn)涵著三列數(shù)。 學(xué)生: 、0,5,10,15,20,25,…。 、18,15.5,13,10.5,8,5.5. 、10072,10144,10216,10288,10360. (設(shè)置意圖:從實(shí)例引入,實(shí)質(zhì)是給出了等差數(shù)列的現(xiàn)實(shí)背景,目的是讓學(xué)生感受到等差數(shù)列是現(xiàn)實(shí)生活中大量存在的數(shù)學(xué)模型。通過分析,由特殊到一般,激發(fā)學(xué)生學(xué)習(xí)探究知識(shí)的自主性,培養(yǎng)學(xué)生的歸納能力。 二、觀察歸納,形成定義 、0,5,10,15,20,25,…。 、18,15.5,13,10.5,8,5.5. 、10072,10144,10216,10288,10360. 思考1上述數(shù)列有什么共同特點(diǎn)? 思考2根據(jù)上數(shù)列的共同特點(diǎn),你能給出等差數(shù)列的一般定義嗎? 思考3你能將上述的文字語言轉(zhuǎn)換成數(shù)學(xué)符號(hào)語言嗎? 教師:引導(dǎo)學(xué)生思考這三列數(shù)具有的共同特征,然后讓學(xué)生抓住數(shù)列的特征,歸納得出等差數(shù)列概念。 學(xué)生:分組討論,可能會(huì)有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定。 教師引導(dǎo)歸納出:等差數(shù)列的定義;另外,教師引導(dǎo)學(xué)生從數(shù)學(xué)符號(hào)角度理解等差數(shù)列的定義。 (設(shè)計(jì)意圖:通過對一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會(huì)到等差數(shù)列的規(guī)律和共同特點(diǎn);一開始抓。骸皬牡诙(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差為同一常數(shù)”,落實(shí)對等差數(shù)列概念的準(zhǔn)確表達(dá)。) 三、舉一反三,鞏固定義 1、判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d. (1)1,1,1,1,1; (2)1,0,1,0,1; (3)2,1,0,-1,-2; (4)4,7,10,13,16. 教師出示題目,學(xué)生思考回答。教師訂正并強(qiáng)調(diào)求公差應(yīng)注意的問題。 注意:公差d是每一項(xiàng)(第2項(xiàng)起)與它的前一項(xiàng)的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負(fù)數(shù),也可以為0. 。ㄔO(shè)計(jì)意圖:強(qiáng)化學(xué)生對等差數(shù)列“等差”特征的理解和應(yīng)用)。 2、思考4:設(shè)數(shù)列{an}的通項(xiàng)公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么? 。ㄔO(shè)計(jì)意圖:強(qiáng)化等差數(shù)列的證明定義法) 四、利用定義,導(dǎo)出通項(xiàng) 1、已知等差數(shù)列:8,5,2,…,求第200項(xiàng)? 2、已知一個(gè)等差數(shù)列{an}的首項(xiàng)是a1,公差是d,如何求出它的任意項(xiàng)an呢? 教師出示問題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示。根據(jù)學(xué)生在課堂上的具體情況進(jìn)行具體評價(jià)、引導(dǎo),總結(jié)推導(dǎo)方法,體會(huì)歸納思想以及累加求通項(xiàng)的方法;讓學(xué)生初步嘗試處理數(shù)列問題的常用方法。 。ㄔO(shè)計(jì)意圖:引導(dǎo)學(xué)生觀察、歸納、猜想,培養(yǎng)學(xué)生合理的推理能力。學(xué)生在分組合作探究過程中,可能會(huì)找到多種不同的解決辦法,教師要逐一點(diǎn)評,并及時(shí)肯定、贊揚(yáng)學(xué)生善于動(dòng)腦、勇于創(chuàng)新的品質(zhì),激發(fā)學(xué)生的創(chuàng)造意識(shí)。鼓勵(lì)學(xué)生自主解答,培養(yǎng)學(xué)生運(yùn)算能力) 五、應(yīng)用通項(xiàng),解決問題 1、判斷100是不是等差數(shù)列2,9,16,…的項(xiàng)?如果是,是第幾項(xiàng)? 2、在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an. 3、求等差數(shù)列3,7,11,…的第4項(xiàng)和第10項(xiàng) 教師:給出問題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況。 學(xué)生:教師叫學(xué)生代表總結(jié)此類題型的解題思路,教師補(bǔ)充:已知等差數(shù)列的首項(xiàng)和公差就可以求出其通項(xiàng)公式 。ㄔO(shè)計(jì)意圖:主要是熟悉公式,使學(xué)生從中體會(huì)公式與方程之間的聯(lián)系。初步認(rèn)識(shí)“基本量法”求解等差數(shù)列問題。) 七、歸納總結(jié): 1、一個(gè)定義: 等差數(shù)列的定義及定義表達(dá)式 2、一個(gè)公式: 等差數(shù)列的通項(xiàng)公式 3、二個(gè)應(yīng)用: 定義和通項(xiàng)公式的應(yīng)用 教師:讓學(xué)生思考整理,找?guī)讉(gè)代表發(fā)言,最后教師給出補(bǔ)充 。ㄔO(shè)計(jì)意圖:引導(dǎo)學(xué)生去聯(lián)想本節(jié)課所涉及到的各個(gè)方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認(rèn)識(shí)和掌握基本概念,并靈活運(yùn)用基本概念。) 【設(shè)計(jì)反思】 本設(shè)計(jì)從生活中的數(shù)列模型導(dǎo)入,有助于發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)列的興趣。在探索的過程中,學(xué)生通過分析、觀察,歸納出等差數(shù)列定義,然后由定義導(dǎo)出通項(xiàng)公式,強(qiáng)化了由具體到抽象,由特殊到一般的思維過程,有助于提高學(xué)生分析問題和解決問題的能力。本節(jié)課教學(xué)采用啟發(fā)方法,以教師提出問題、學(xué)生探討解決問題為途徑,以相互補(bǔ)充展開教學(xué),總結(jié)科學(xué)合理的知識(shí)體系,形成師生之間的良性互動(dòng),提高課堂教學(xué)效率。 【高中數(shù)學(xué)教案】相關(guān)文章: 高中數(shù)學(xué)教案07-27 高中數(shù)學(xué)教案05-25 蘇教版高中數(shù)學(xué)教案05-27 高中數(shù)學(xué)教案模板11-15 高中數(shù)學(xué)教案模板范文04-21 數(shù)學(xué)教案06-02高中數(shù)學(xué)教案模板7
高中數(shù)學(xué)教案模板8
高中數(shù)學(xué)教案模板9
高中數(shù)學(xué)教案模板10
高中數(shù)學(xué)教案模板11
高中數(shù)學(xué)教案模板12
高中數(shù)學(xué)教案模板13
高中數(shù)學(xué)教案模板14
高中數(shù)學(xué)教案模板15