- 相關推薦
《正比例函數(shù)的圖象和性質》教案(通用5篇)
作為一名教學工作者,時常要開展教案準備工作,借助教案可以有效提升自己的教學能力?靵韰⒖冀贪甘窃趺磳懙陌!以下是小編整理的《正比例函數(shù)的圖象和性質》教案,僅供參考,希望能夠幫助到大家。
《正比例函數(shù)的圖象和性質》教案 1
一、教學內容:
正比例函數(shù)的圖象和性質
二、教學目標:
。ㄒ唬┲R與能力
1、進一步鞏固正比例函數(shù)的概念,會畫正比例函數(shù)的圖象,進一步熟悉函數(shù)圖象作圖步驟。
2、能根據(jù)正比例函數(shù)圖象觀察、發(fā)現(xiàn)歸納出它的性質,并會簡單運用。
。ǘ┻^程與方法
1、通過實例函數(shù)圖象畫法的學習,發(fā)現(xiàn)并總結正比例函數(shù)圖象的常用畫法。
2、通過觀察、探究、分析、引導學生發(fā)現(xiàn)正比例函數(shù)的性質。
3、培養(yǎng)學生善于觀察問題發(fā)現(xiàn)結論,了解數(shù)形結合及由一般到特殊的數(shù)學思想。
。ㄈ┣楦袘B(tài)度及價值觀
培養(yǎng)學生積極參與數(shù)學活動,勇于探究,發(fā)現(xiàn)數(shù)學的現(xiàn)象和規(guī)律,培養(yǎng)學生的數(shù)學交流能力和團隊協(xié)作精神。
三、教學重點:
正比例函數(shù)圖象的畫法及性質的探索。
四、教學難點:
發(fā)現(xiàn)、歸納正比例函數(shù)的性質。
五、教法與學法
教法:本節(jié)課選用引導學生觀察,發(fā)現(xiàn)法和探索實踐歸納法。本節(jié)課的難點是發(fā)現(xiàn)正比例函數(shù)性質,因此我通過教師引導,啟發(fā)調動學生的積極性,讓學生在課堂上多活動(畫、圖、交流、展示)、多觀察(圖象), 主動參與到整個教學活動中來,最后發(fā)現(xiàn)其性質。
學法指導:教師引導學生觀察、發(fā)現(xiàn)、歸納的學習方法。
六、教具:
三角板、多媒體。
七、教學過程。
教學過程:
。ㄒ唬毓手拢胝n題。
1、下列函數(shù)哪些是正比例函數(shù)?
。1)y=-3x
。2)y= x + 3
。3) y= 4x (4)y= x2
2、(學生回答完上述問題后提問概念)
一般地,形如y= kx(K≠0)的函數(shù),叫正比例函數(shù),其中K叫做比例系數(shù)。
3、畫函數(shù)圖象的一般步驟
(1)列表
。2)描點
。3)連線 學生回答后:
教師引導:現(xiàn)在我們已經知道正比例函數(shù)的意義及畫圖象的步驟,那么正比例函數(shù)的圖象有什么特征呢?
出示課題
(二)探究正比例函數(shù)的圖象和性質 例1、畫出下列正比例函數(shù)的圖象。 (1)y=2x(2)y=-2x
解(1)函數(shù)y=2x中x 可取任意實數(shù),列表如下: 描點 連線
(2)學生練習畫出函數(shù)y=-2x的圖象。
(3)提出問題
師:觀察上面的函數(shù)圖象,它們的形狀相同嗎?是什么?一定經過哪些象限和特殊點?
生甲:一條直線
生乙:過原點的直線,y=2x的.圖象過一、三象限,y=-2x的圖象過二、四象限。
師:點評學生后
正比例函數(shù)的圖是經過原點(0,0)和(1、K)的一條直線。
師:通過前面的探討,同學們發(fā)現(xiàn)畫正比例函數(shù)圖象有更簡單的方法嗎?為什么?
生乙:過原點畫一條直線。
生丙:過原點和(1、K)兩點畫一條直線。
師:點評后師生共同歸納出一般規(guī)律:一般地,正比例函數(shù)y= kx (K≠0)的圖象過(0,0),(1、K)兩點的直線,我把函數(shù)y= kx 的圖象叫直線y= kx ,以后畫y= kx 圖像時通常選取(0,0)和(1、K)兩點。
。ㄈ⿲W生動手實踐“兩點法”畫正比例函數(shù)圖象。
。1)y= x
。2)y= -x
師:比較以上函數(shù),觀察它們的圖象,思考回答下列問題:
1、圖象的位置與K值有何聯(lián)系?
2、正比例函數(shù)中y如何隨x的變化而變化?通過研討,觀察、討論、發(fā)現(xiàn)結論:K>0時,y=kx 圖象過一、三象限,y隨x的增大而增大,k<0時,圖象過二、四象限,y隨x的增大而減小。
師:除了從圖上看出,還有別的方法得出y隨x的變化規(guī)律嗎? 生:列表過程中
。ㄋ模╈柟叹毩
1、用你認為最簡單的方法畫出下列函數(shù)圖象。
(1)y=1.5x
(2) y=-3x
2、正比例函數(shù)y=-4x的圖象是過( )和( )兩點的一條直線,圖象過象限,y隨x的。
3、正比例函數(shù)y=(m-1)x的圖象過一、三象限,則m的取值范圍是。 A.m=1 B.m>1C.m<1 D.m≥1
4、下列函數(shù)①y=5x ② y=-3x③y= x ④y= -x中,y隨x的增大而減小的是 。
5、正比例函數(shù)y=(1-2m)xm2-3圖象過第二、四限, 求m值。
。ㄎ澹┬〗Y:談一談,本節(jié)課你有什么收獲?(知識上,方法上)學生回答后,出示下列內容。
。┎贾米鳂I(yè)
A:課本習題14.2第1題,練習冊33頁 第3、9 題。
B:課本習題14.2第1,2題。
。ㄆ撸┌鍟O計:
實踐操作正比例函數(shù) 分析、發(fā)現(xiàn)歸納正鞏固練習 圖象的畫法 比例函數(shù)的性質
課堂小結
。ò耍┱n后反思:
《正比例函數(shù)的圖象和性質》教案 2
一、教學目標
1. 知識與技能:
理解正比例函數(shù)的定義,掌握其表達式 y = kx (k 為常數(shù))。
掌握正比例函數(shù)的圖象特點,即圖象是一條通過原點的直線,斜率為 k。
理解正比例函數(shù)的性質,包括單調性和與坐標軸的交點。
2. 過程與方法:
通過繪制正比例函數(shù)的圖象,熟悉函數(shù)圖象作圖步驟。
引導學生觀察、分析正比例函數(shù)圖象,發(fā)現(xiàn)并歸納其性質。
培養(yǎng)學生數(shù)形結合、由特殊到一般的數(shù)學思想。
3. 情感態(tài)度與價值觀:
激發(fā)學生對數(shù)學學習的興趣,提高他們觀察問題、分析問題的能力。
培養(yǎng)學生的探究精神和團隊協(xié)作精神。
二、教學重點與難點
1. 教學重點:
正比例函數(shù)圖象的畫法及性質的探索。
2. 教學難點:
發(fā)現(xiàn)、歸納正比例函數(shù)的性質。
三、教學方法與學法指導
1. 教學方法:
講授法:介紹正比例函數(shù)的定義、圖象特點和性質。
討論法:引導學生討論正比例函數(shù)圖象的特點和性質。
實踐法:讓學生動手繪制正比例函數(shù)的圖象,觀察并歸納其性質。
2. 學法指導:
引導學生通過觀察、發(fā)現(xiàn)、歸納的學習方法,掌握正比例函數(shù)的圖象和性質。
鼓勵學生積極參與課堂討論,提出自己的見解和疑問。
四、教學過程
1. 引入新課:
復習正比例函數(shù)的定義和表達式。
提問:你們知道正比例函數(shù)的圖象是什么樣的嗎?
2. 探究正比例函數(shù)的圖象和性質:
引導學生繪制正比例函數(shù)的圖象,觀察圖象的特點。
分析正比例函數(shù)圖象的斜率表示 y 隨 x 變化的速率,以及截距為 0 的性質。
引導學生歸納正比例函數(shù)的單調性,即函數(shù)圖象是一條單調增加或單調減少的直線。
討論正比例函數(shù)與坐標軸的`交點,特別是與 y 軸的交點為 (0,k)。
3. 實際應用:
通過實際問題引入正比例函數(shù)的應用,例如速度與時間的關系。
引導學生建立方程和繪制圖象來解決實際問題。
4. 課堂小結:
總結正比例函數(shù)的圖象和性質。
強調數(shù)形結合、由特殊到一般的數(shù)學思想在解決數(shù)學問題中的重要性。
五、作業(yè)布置
1. 繪制幾個不同 k 值的正比例函數(shù)圖象,觀察并總結 k 的正負對圖象的影響。
2. 找出幾個實際問題,建立正比例函數(shù)模型,并繪制相應的圖象。
六、教具準備
三角板、多媒體設備(用于展示正比例函數(shù)的圖象和性質)。
《正比例函數(shù)的圖象和性質》教案 3
一、教學目標
1. 知識與技能:
理解正比例函數(shù)的定義和表達式 y = kx (k 為常數(shù))。
掌握正比例函數(shù)圖象的特點,即圖象是一條通過原點的直線,斜率為 k。
理解正比例函數(shù)圖象的性質,包括單調性、過原點等。
能夠繪制正比例函數(shù)的圖象,并通過圖象分析函數(shù)的性質。
2. 過程與方法:
通過實例和圖象,引導學生觀察、發(fā)現(xiàn)、歸納正比例函數(shù)的性質。
培養(yǎng)學生的數(shù)形結合思想和由一般到特殊的數(shù)學思維。
3. 情感態(tài)度與價值觀:
激發(fā)學生學習數(shù)學的興趣和積極性。
培養(yǎng)學生的觀察、分析和解決問題的能力。
二、教學重點與難點
1. 教學重點:
正比例函數(shù)圖象的畫法及性質的探索。
2. 教學難點:
發(fā)現(xiàn)、歸納正比例函數(shù)的性質。
三、教學方法與課時
1. 教學方法:講授法、討論法、觀察法、實踐法。
2. 課時:1課時
四、教學過程
1. 引入新課
復習正比例函數(shù)的定義和表達式,引出本節(jié)課的學習內容。
2. 探究正比例函數(shù)的圖象和性質
繪制正比例函數(shù)的圖象:通過數(shù)軸和坐標系,引導學生繪制正比例函數(shù)的圖象,強調圖象是一條通過原點的'直線,斜率為 k。
分析正比例函數(shù)圖象的性質:
單調性:解釋正比例函數(shù)的單調性,即函數(shù)圖象是一條單調增加或單調減少的直線。引導學生通過觀察圖象和分析表達式來判斷函數(shù)的單調性。
過原點:強調正比例函數(shù)圖象一定經過原點 (0,0)。引導學生通過實際例子來驗證這一性質。
與坐標軸的交點:解釋正比例函數(shù)與 x 軸的交點為 (0,0),與 y 軸的交點為 (0,k)。引導學生通過表達式和圖象來確定交點。
3. 實際應用
通過實際問題引入正比例函數(shù)的應用,例如速度與時間的關系,引導學生理解速度隨時間的變化是成正比例的。
引導學生通過建立方程和繪制圖象來解決實際問題。
4. 鞏固練習
提供練習題,讓學生自行繪制正比例函數(shù)的圖象并分析其性質。
通過小組討論,讓學生分享自己的發(fā)現(xiàn)和解題經驗。
5. 課堂小結
總結正比例函數(shù)的圖象和性質,強調重點難點。
布置課后作業(yè),鞏固所學知識。
五、教具準備
三角板、直尺、坐標系紙等繪圖工具。
多媒體設備用于展示課件和圖象。
六、板書設計
正比例函數(shù)的定義和表達式
正比例函數(shù)圖象的特點和性質
實際應用示例
練習題和答案
通過清晰的教學設計,學生能夠更好地理解正比例函數(shù)的圖象和性質,掌握繪制正比例函數(shù)圖象的方法,并通過實際應用鞏固所學知識。
《正比例函數(shù)的圖象和性質》教案 4
一、教學目標
1. 知識與技能:
理解正比例函數(shù)的定義及表達式y(tǒng) = kx(k為常數(shù))。
掌握正比例函數(shù)圖象的繪制方法,理解其圖象是一條通過原點的直線。
掌握正比例函數(shù)圖象的性質,包括單調性、過原點等。
2. 過程與方法:
通過實例,引導學生理解正比例函數(shù)的概念及其圖象特征。
通過畫圖、比較等活動,讓學生體會數(shù)形結合的思想,培養(yǎng)學生觀察、歸納、總結的能力。
3. 情感、態(tài)度與價值觀:
激發(fā)學生對數(shù)學學習的興趣,培養(yǎng)學生的探究精神和合作意識。
培養(yǎng)學生認真、細心、嚴謹?shù)膶W習態(tài)度和學習習慣。
二、教學重點與難點
1. 教學重點:
正比例函數(shù)圖象的畫法及性質。
2. 教學難點:
結合圖象發(fā)現(xiàn)并理解正比例函數(shù)的性質。
三、教學方法與課時
1. 教學方法:講授法、討論法、探究法。
2. 課時:1課時。
四、教學過程
1. 引入新課
復習正比例函數(shù)的定義及表達式,強調k為常數(shù)且k≠0。
通過實際問題(如速度與時間的關系)引入正比例函數(shù)的應用背景。
2. 探究正比例函數(shù)的圖象
引導學生利用數(shù)軸和坐標系繪制正比例函數(shù)的圖象,強調圖象是一條通過原點的.直線。
引導學生分析圖象的斜率k,理解k的正負對函數(shù)圖象的影響。
3. 探究正比例函數(shù)的性質
分析正比例函數(shù)圖象的單調性,引導學生通過觀察圖象和分析表達式來判斷函數(shù)的單調性。
強調正比例函數(shù)圖象一定經過原點(0,0),并通過實際例子進行驗證。
4. 鞏固練習
給出一些具體的正比例函數(shù)表達式,讓學生練習繪制其圖象并總結性質。
通過小組討論、展示等形式,讓學生互相交流學習心得,加深對正比例函數(shù)圖象和性質的理解。
5. 課堂小結
總結本節(jié)課的學習內容,強調正比例函數(shù)圖象和性質的重要性。
布置適量的課后練習,以鞏固學習效果。
五、教具準備
三角板、直尺、白板筆等繪圖工具。
多媒體課件或黑板等展示工具。
六、教學評價
通過課堂觀察、提問、練習等方式,評價學生對正比例函數(shù)圖象和性質的理解程度。
鼓勵學生提出問題和不同見解,培養(yǎng)學生的批判性思維和創(chuàng)新能力。
《正比例函數(shù)的圖象和性質》教案 5
一、教學目標
1. 知識與技能:
理解正比例函數(shù)的定義及表達式 y = kx (k 為常數(shù))。
掌握正比例函數(shù)圖象的繪制方法,理解圖象是一條通過原點的直線,斜率為 k。
理解正比例函數(shù)圖象的性質,包括單調性、過原點等。
能夠根據(jù)正比例函數(shù)圖象觀察、發(fā)現(xiàn)歸納出函數(shù)的性質,并會簡單應用。
2. 過程與方法:
通過實例學習正比例函數(shù)圖象的畫法,發(fā)現(xiàn)并總結常用畫法。
經歷觀察、探究、分析過程,理解正比例函數(shù)的性質。
培養(yǎng)學生善于觀察問題、發(fā)現(xiàn)結論的能力,了解數(shù)形結合及由一般到特殊的數(shù)學思想。
3. 情感、態(tài)度與價值觀:
激發(fā)學生學習數(shù)學的興趣和積極性。
培養(yǎng)學生實事求是的科學態(tài)度,以及積極參與數(shù)學活動、勇于探究的精神。
二、教學重難點
1. 教學重點:
正比例函數(shù)圖象的畫法及性質的探索。
正比例函數(shù)性質的理解與應用。
2. 教學難點:
發(fā)現(xiàn)、歸納正比例函數(shù)的性質。
理解正比例函數(shù)圖象與坐標軸的交點情況。
三、教學方法與學法指導
1. 教學方法:
講授法:系統(tǒng)介紹正比例函數(shù)的定義、圖象及性質。
討論法:通過問題討論,加深學生對正比例函數(shù)的理解。
實踐操作法:引導學生動手繪制正比例函數(shù)圖象,觀察圖象特征。
2. 學法指導:
觀察法:通過觀察正比例函數(shù)圖象,發(fā)現(xiàn)其性質。
歸納法:通過歸納正比例函數(shù)的.性質,形成知識體系。
探究法:鼓勵學生自主探究正比例函數(shù)的圖象和性質。
四、教具準備
三角板、直尺、圓規(guī)等繪圖工具。
多媒體課件,用于展示正比例函數(shù)圖象和性質。
五、教學過程
1. 引入新課:
通過實際問題引入正比例函數(shù)的概念,如速度與時間的關系等。
復習正比例函數(shù)的定義及表達式 y = kx (k 為常數(shù))。
2. 探究正比例函數(shù)的圖象:
引導學生繪制正比例函數(shù)的圖象,強調圖象是一條通過原點的直線,斜率為 k。
分析正比例函數(shù)圖象的性質,包括單調性、過原點等。
3. 探究正比例函數(shù)的性質:
引導學生觀察正比例函數(shù)圖象,發(fā)現(xiàn)其性質,如增減性、與坐標軸的交點等。
通過實例分析,加深學生對正比例函數(shù)性質的理解。
4. 應用與拓展:
通過實際問題,引導學生利用正比例函數(shù)的知識解決問題。
拓展正比例函數(shù)的應用領域,如物理、經濟等。
5. 課堂小結:
總結正比例函數(shù)的定義、圖象及性質。
強調正比例函數(shù)在解決實際問題中的應用價值。
6. 作業(yè)布置:
繪制幾個不同 k 值的正比例函數(shù)圖象,并觀察其性質。
利用正比例函數(shù)知識解決一個實際問題。
【《正比例函數(shù)的圖象和性質》教案】相關文章:
一次函數(shù)的圖象和性質教案01-11
《一次函數(shù)的圖象和性質》教案05-28
反比例函數(shù)的圖象與性質教案參考08-06
三角函數(shù)的圖象與性質總課時教案08-07
函數(shù)的圖象教學教案設計03-19
一次函數(shù)的圖象教案02-14
二次函數(shù)的圖象教案設計01-23