高考數(shù)學(xué)必考知識點
在年少學(xué)習(xí)的日子里,是不是經(jīng)常追著老師要知識點?知識點就是“讓別人看完能理解”或者“通過練習(xí)我能掌握”的內(nèi)容。還在為沒有系統(tǒng)的知識點而發(fā)愁嗎?下面是小編整理的高考數(shù)學(xué)必考知識點,歡迎閱讀,希望大家能夠喜歡。
高考數(shù)學(xué)必考知識點1
解排列組合問題的依據(jù)是:分類相加,分步相乘,有序排列,無序組合。
解排列組合問題的規(guī)律是:相鄰問題捆綁法;不鄰問題插空法;多排問題單排法;定位問題優(yōu)先法;定序問題倍縮法;多元問題分類法;有序分配問題法;選取問題先排后排法;至多至少問題間接法。
二項式系數(shù)與展開式某一項的系數(shù)易混,第r+1項的二項式系數(shù)為。二項式系數(shù)最大項與展開式中系數(shù)最大項易混。二項式系數(shù)最大項為中間一項或兩項;展開式中系數(shù)最大項的求法要用解不等式組來確定r
你掌握了三種常見的概率公式嗎?(①等可能事件的概率公式;②互斥事件有一個發(fā)生的概率公式;③相互獨立事件同時發(fā)生的概率公式。)
二項式展開式的通項公式、n次獨立重復(fù)試驗中事件A發(fā)生k次的概率易記混。
通項公式:它是第r+1項而不是第r項;
事件A發(fā)生k次的概率:。其中k=0,1,2,3,…,n,且0
求分布列的解答題你能把步驟寫全嗎?
如何對總體分布進(jìn)行估計?(用樣本估計總體,是研究統(tǒng)計問題的一個基本思想方法,一般地,樣本容量越大,這種估計就越精確,要求能畫出頻率分布表和頻率分布直方圖;理解頻率分布直方圖矩形面積的幾何意義。)
你還記得一般正態(tài)總體如何化為標(biāo)準(zhǔn)正態(tài)總體嗎?(對任一正態(tài)總體來說,取值小于x的概率,其中表示標(biāo)準(zhǔn)正態(tài)總體取值小于的概率)
高考數(shù)學(xué)必考知識點2
一、函數(shù)的單調(diào)性
在(a,b)內(nèi)可導(dǎo)函數(shù)f(x),f(x)在(a,b)任意子區(qū)間內(nèi)都不恒等于0.
f(x)f(x)在(a,b)上為增函數(shù).
f(x)f(x)在(a,b)上為減函數(shù).
二、函數(shù)的極值
1、函數(shù)的極小值:
函數(shù)y=f(x)在點x=a的函數(shù)值f(a)比它在點x=a附近其它點的函數(shù)值都小,f(a)=0,而且在點x=a附近的左側(cè)f(x)0,右側(cè)f(x)0,則點a叫做函數(shù)y=f(x)的極小值點,f(a)叫做函數(shù)y=f(x)的極小值.
2、函數(shù)的極大值:
函數(shù)y=f(x)在點x=b的函數(shù)值f(b)比它在點x=b附近的其他點的函數(shù)值都大,f(b)=0,而且在點x=b附近的左側(cè)f(x)0,右側(cè)f(x)0,則點b叫做函數(shù)y=f(x)的極大值點,f(b)叫做函數(shù)y=f(x)的極大值.
極小值點,極大值點統(tǒng)稱為極值點,極大值和極小值統(tǒng)稱為極值.
三、函數(shù)的最值
1、在閉區(qū)間[a,b]上連續(xù)的函數(shù)f(x)在[a,b]上必有最大值與最小值.
2、若函數(shù)f(x)在[a,b]上單調(diào)遞增,則f(a)為函數(shù)的最小值,f(b)為函數(shù)的最大值;若函數(shù)f(x)在[a,b]上單調(diào)遞減,則f(a)為函數(shù)的最大值,f(b)為函數(shù)的最小值.
四、求可導(dǎo)函數(shù)單調(diào)區(qū)間的一般步驟和方法
1、確定函數(shù)f(x)的定義域;
2、求f(x),令f(x)=0,求出它在定義域內(nèi)的一切實數(shù)根;
3、把函數(shù)f(x)的間斷點(即f(x)的無定義點)的橫坐標(biāo)和上面的各實數(shù)根按由小到大的順序排列起來,然后用這些點把函數(shù)f(x)的定義區(qū)間分成若干個小區(qū)間;
4、確定f(x)在各個開區(qū)間內(nèi)的符號,根據(jù)f(x)的符號判定函數(shù)f(x)在每個相應(yīng)小開區(qū)間內(nèi)的增減性.
五、求函數(shù)極值的步驟
1、確定函數(shù)的定義域;
2、求方程f(x)=0的根;
3、用方程f(x)=0的根順次將函數(shù)的定義域分成若干個小開區(qū)間,并形成表格;
4、由f(x)=0根的兩側(cè)導(dǎo)數(shù)的符號來判斷f(x)在這個根處取極值的情況.
六、求函數(shù)f(x)在[a,b]上的最大值和最小值的步驟
1、求函數(shù)在(a,b)內(nèi)的極值;
2、求函數(shù)在區(qū)間端點的函數(shù)值f(a),f(b);
3、將函數(shù)f(x)的各極值與f(a),f(b)比較,其中最大的一個為最大值,最小的一個為最小值.
特別提醒:
1、f(x)0與f(x)為增函數(shù)的關(guān)系:f(x)0能推出f(x)為增函數(shù),但反之不一定.如函數(shù)f(x)=x3在(-,+)上單調(diào)遞增,但f(x)0,所以f(x)0是f(x)為增函數(shù)的充分不必要條件.
2、可導(dǎo)函數(shù)的極值點必須是導(dǎo)數(shù)為0的點,但導(dǎo)數(shù)為0的點不一定是極值點,即f(x0)=0是可導(dǎo)函數(shù)f(x)在x=x0處取得極值的必要不充分條件.例如函數(shù)y=x3在x=0處有y|x=0=0,但x=0不是極值點.此外,函數(shù)不可導(dǎo)的點也可能是函數(shù)的極值點.
3、可導(dǎo)函數(shù)的極值表示函數(shù)在一點附近的情況,是在局部對函數(shù)值的比較;函數(shù)的最值是表示函數(shù)在一個區(qū)間上的情況,是對函數(shù)在整個區(qū)間上的函數(shù)值的比較.
高考數(shù)學(xué)必考知識點3
表達(dá)式:(a+b)(a-b)=a^2-b^2,兩個數(shù)的和與這兩個數(shù)差的積,等于這兩個數(shù)的平方差,這個公式就叫做乘法的平方差公式
公式運用
可用于某些分母含有根號的分式:
1/(3-4倍根號2)化簡:
1×(3+4倍根號2)/(3-4倍根號2)^2;=(3+4倍根號2)/(9-32)=(3+4倍根號2)/-23
[解方程]
x^2-y^2=1991
[思路分析]
利用平方差公式求解
[解題過程]
x^2-y^2=1991
。▁+y)(x-y)=1991
因為1991可以分成1×1991,11×181
所以如果x+y=1991,x-y=1,解得x=996,y=995
如果x+y=181,x-y=11,x=96,y=85同時也可以是負(fù)數(shù)
所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995
或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85
有時應(yīng)注意加減的過程。
高考數(shù)學(xué)必考知識點4
一、求動點的軌跡方程的基本步驟
1、建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動點M的坐標(biāo);
2、寫出點M的集合;
3、列出方程=0;
4、化簡方程為最簡形式;
5、檢驗。
二、求動點的軌跡方程的常用方法:
求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點法、參數(shù)法和交軌法等。
1、直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
2、定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。
3、相關(guān)點法:用動點Q的坐標(biāo)x,y表示相關(guān)點P的坐標(biāo)x0、y0,然后代入點P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點法。
4、參數(shù)法:當(dāng)動點坐標(biāo)x、y之間的直接關(guān)系難以找到時,往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
5、交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。
直譯法:求動點軌跡方程的一般步驟
、俳ㄏ怠⑦m當(dāng)?shù)淖鴺?biāo)系;
、谠O(shè)點——設(shè)軌跡上的任一點P(x,y);
、哿惺健谐鰟狱cp所滿足的關(guān)系式;
、艽鷵Q——依條件的特點,選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;
、葑C明——證明所求方程即為符合條件的動點軌跡方程。
高考數(shù)學(xué)必考知識點5
角的概念的推廣.弧度制.
任意角的三角函數(shù).單位圓中的三角函線.同角三角函數(shù)的基本關(guān)系式.正弦、余弦的誘導(dǎo)公式.
兩角和與差的正弦、余弦、正切.二倍角的正弦、余弦、正切.
正弦函數(shù)、余弦函數(shù)的圖像和性質(zhì).周期函數(shù).函數(shù)y=Asin(ωx+φ)的圖像.正切函數(shù)的圖像和性質(zhì).已知三角函數(shù)值求角.
正弦定理.余弦定理.斜三角形解法.
考試要求
(1)理解任意角的概念、弧度的意義能正確地進(jìn)行弧度與角度的換算.
(2)掌握任意角的正弦、余弦、正切的定義;了解余切、正割、余割的定義;掌握同角三角函數(shù)的基本關(guān)系式;掌握正弦、余弦的誘導(dǎo)公式;了解周期函數(shù)與最小正周期的意義.
(3)掌握兩角和與兩角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式.
(4)能正確運用三角公式,進(jìn)行簡單三角函數(shù)式的化簡、求值和恒等式證明.
(5)理解正弦函數(shù)、余弦函數(shù)、正切函數(shù)的圖像和性質(zhì),會用“五點法”畫正弦函數(shù)、余弦函數(shù)和函數(shù)y=Asin(ωx+φ)的簡圖,理解A.ω、φ的物理意義.
(6)會由已知三角函數(shù)值求角,并會用符號arcsinxarc-cosxarctanx表示.
(7)掌握正弦定理、余弦定理,并能初步運用它們解斜三角形.
(8)“同角三角函數(shù)基本關(guān)系式:sin2α+cos2α=1,sinα/cosα=tanα,tanα?cotα=1”.
高考數(shù)學(xué)必考知識點6
易錯點1 遺忘空集致誤
錯因分析:由于空集是任何非空集合的真子集,因此,對于集合B高三經(jīng)典糾錯筆記:數(shù)學(xué)A,就有B=A,φ≠B高三經(jīng)典糾錯筆記:數(shù)學(xué)A,B≠φ,三種情況,在解題中如果思維不夠縝密就有可能忽視了 B≠φ這種情況,導(dǎo)致解題結(jié)果錯誤。尤其是在解含有參數(shù)的集合問題時,更要充分注意當(dāng)參數(shù)在某個范圍內(nèi)取值時所給的集合可能是空集這種情況?占且粋特殊的集合,由于思維定式的原因,考生往往會在解題中遺忘了這個集合,導(dǎo)致解題錯誤或是解題不全面。 易錯點2 忽視集合元素的三性致誤
錯因分析:集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數(shù)的集合,實際上就隱含著對字母參數(shù)的一些要求。在解題時也可以先確定字母參數(shù)的范圍后,再具體解決問題。
易錯點3 四種命題的結(jié)構(gòu)不明致誤
錯因分析:如果原命題是“若 A則B”,則這個命題的逆命題是“若B則A”,否命題是“若┐A則┐B”,逆否命題是“若┐B則┐A”。這里面有兩組等價的命題,即“原命題和它的逆否命題等價,否命題與逆命題等價”。在解答由一個命題寫出該命題的其他形式的命題時,一定要明確四種命題的結(jié)構(gòu)以及它們之間的等價關(guān)系。另外,在否定一個命題時,要注意全稱命題的否定是特稱命題,特稱命題的
否定是全稱命題。如對“a,b都是偶數(shù)”的否定應(yīng)該是“a,b不都是偶數(shù)”,而不應(yīng)該是“a ,b都是奇數(shù)”。
易錯點4 充分必要條件顛倒致誤
錯因分析:對于兩個條件A,B,如果A=>B成立,則A是B的充分條件,B是A的必要條件;如果B=>A成立,則A是B的必要條件,B是A的充分條件;如果A<=>B,則A,B互為充分必要條件。解題時最容易出錯的就是顛倒了充分性與必要性,所以在解決這類問題時一定要根據(jù)充要條件的概念作出準(zhǔn)確的判斷。
2、函數(shù)的極大值:
函數(shù)y=f(x)在點x=b的函數(shù)值f(b)比它在點x=b附近的其他點的函數(shù)值都大,f′(b)=0,而且在點x=b附近的左側(cè)f′(x)>0,右側(cè)f′(x)<0,則點b叫做函數(shù)y=f(x)的極大值點,f(b)叫做函數(shù)y=f(x)的極大值.
極小值點,極大值點統(tǒng)稱為極值點,極大值和極小值統(tǒng)稱為極值.
三、函數(shù)的最值
1、在閉區(qū)間[a,b]上連續(xù)的函數(shù)f(x)在[a,b]上必有最大值與最小值.
2、
若函數(shù)f(x)在[a,b]上單調(diào)遞增,則f(a)為函數(shù)的最小值,f(b)為函數(shù)的最大值;若函數(shù)f(x)在[a,b]上單調(diào)遞減,則f(a)為函數(shù)的最大值,f(b)為函數(shù)的最小值.
四、求可導(dǎo)函數(shù)單調(diào)區(qū)間的一般步驟和方法
1、確定函數(shù)f(x)的定義域;
2、求f′(x),令f′(x)=0,求出它在定義域內(nèi)的一切實數(shù)根;
3、把函數(shù)f(x)的間斷點(即f(x)的無定義點)的橫坐標(biāo)和上面的各實數(shù)根按由小到大的順序排列起來,然后用這些點把函數(shù)f(x)的定義區(qū)間分成若干個小區(qū)間;
4、確定f′(x)在各個開區(qū)間內(nèi)的符號,根據(jù)f′(x)的符號判定函數(shù)f(x)在每個相應(yīng)小開區(qū)間內(nèi)的增減性.
五、求函數(shù)極值的步驟
1、確定函數(shù)的定義域;
2、求方程f′(x)=0的根;
3、用方程f′(x)=0的根順次將函數(shù)的定義域分成若干個小開區(qū)間,并形成表格;
4、由f′(x)=0根的兩側(cè)導(dǎo)數(shù)的符號來判斷f′(x)在這個根處取極值的情況.
六、求函數(shù)f(x)在[a,b]上的最大值和最小值的步驟
1、求函數(shù)在(a,b)內(nèi)的極值;
2、求函數(shù)在區(qū)間端點的函數(shù)值f(a),f(b);
3、將函數(shù)f(x)的各極值與f(a),f(b)比較,其中最大的一個為最大值,最小的一個為最小值.
高考數(shù)學(xué)必考知識點11
核心考點非常重要。現(xiàn)在離高考時間非常近,滿打滿算大概40多天的時間,在這樣優(yōu)先的時間里,我們復(fù)習(xí)肯定要有側(cè)重點。關(guān)注核心考點非常重要,核心考點一個是九大核心的知識點,函數(shù)、三角函數(shù),平面向量,不等式,數(shù)列,立體幾何,解析幾何,概率與統(tǒng)計,導(dǎo)數(shù)。這些內(nèi)容非常重要。當(dāng)然每章當(dāng)中還有側(cè)重,比如說拿函數(shù)來講,函數(shù)概念必須清楚,函數(shù)圖象變換是非常重要的一個核心內(nèi)容。此外就是函數(shù)的一種性質(zhì)問題,單調(diào)性、周期性,包括后面我們還談到連續(xù)性問題,像這些性質(zhì)問題是非常重要的。連同最值也是在函數(shù)當(dāng)中重點考察的一些知識點,我想這些內(nèi)容特別值得我們在后面要關(guān)注的。
再比如說像解析幾何這個內(nèi)容,不管理科還是文科,像直線和圓肯定是非常重要的一個內(nèi)容。理科和文科有一點差別了,比如說圓錐曲線方面,橢圓和拋物線理科必須達(dá)到的水平,雙曲線理科只是了解狀態(tài)就可以了。而文科呢?橢圓是要求達(dá)到理解水平,拋物線和雙曲線只是一般的了解狀態(tài)就可以了。這里需要有側(cè)重點。
拿具體知識來講,比如說直線當(dāng)中,兩條直線的位置關(guān)系,平行、垂直的關(guān)系怎么判斷應(yīng)該清楚。直線和圓的位置關(guān)系應(yīng)該清楚,橢圓、雙曲線和拋物線的標(biāo)準(zhǔn)方程,參數(shù)之間的'關(guān)系,再比如直線和橢圓的位置關(guān)系,這是值得我們特別關(guān)注的一個重要的知識內(nèi)容。這是從我們的一個角度來說。
我們后面有六個大題,一般是側(cè)重于六個重要的板塊,因為現(xiàn)階段不可能一個章節(jié)從頭至尾,你沒有時間了,必須把最重要的知識板塊拿出來,比如說數(shù)列與函數(shù)以及不等式,這肯定是重要板塊。再比如說三角函數(shù)和平面向量應(yīng)該是一個,解析幾何和平面幾何和平面向量肯定又是一個。再比如像立體幾何當(dāng)中的空間圖形和平面圖形,這肯定是重要板塊。再后面是概率統(tǒng)計,在解決概率統(tǒng)計問題當(dāng)中一般和計數(shù)原理綜合在一起,最后還有一個板塊是導(dǎo)數(shù)、函數(shù)、方程和不等式,四部分內(nèi)容綜合在一起。
應(yīng)當(dāng)說我們后面六個大題基本上是圍繞著這樣六個板塊來進(jìn)行。這六個板塊肯定是我們的核心內(nèi)容之一。再比如說現(xiàn)在我們高考當(dāng)中要體現(xiàn)對數(shù)學(xué)思想方法的考察,數(shù)學(xué)思想方法以前考察四個方面,函數(shù)和方程思想,數(shù)形結(jié)合思想,分類討論,等價轉(zhuǎn)換,現(xiàn)在又增加了三個,原來這四個方面當(dāng)中有兩類做了改造。函數(shù)和方程思想,數(shù)形結(jié)合思想,分類討論改成了分類討論與整合,等價轉(zhuǎn)換轉(zhuǎn)為劃歸與轉(zhuǎn)化。有限和無限思想,特殊和一般的思想。
像北京往年考了一道題,一個班里面設(shè)計一個八邊形的班徽,給了等腰三角形邊長為一,現(xiàn)在讓你考慮面積多大,按照常規(guī)說法,肯定需要考慮四個三角形面積,二分之一乘上一再乘上一,再乘上四,中間還是正方形,利用余弦定理求等腰三角形底邊的平方就可以了,最后再一加就是我們要的面積。這個問題并不是很麻煩,不管怎么說肯定需要計算,你至少知道三角形面積怎么求,還得考慮余弦定理,再相加還有運算問題,說不定哪個地方?jīng)]有記準(zhǔn),可能出現(xiàn)這樣那樣的問題。
高考數(shù)學(xué)必考知識點12
一.例題講解:
【例1】已知集合M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},則M,N,P滿足關(guān)系
A) M=N P B) M N=P C) M N P D) N P M
分析一:從判斷元素的共性與區(qū)別入手。
解答一:對于集合M:{x|x= ,m∈Z};對于集合N:{x|x= ,n∈Z}
對于集合P:{x|x= ,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的數(shù),而6m+1表示被6除余1的數(shù),所以M N=P,故選B。
分析二:簡單列舉集合中的元素。
解答二:M={…, ,…},N={…, , , ,…},P={…, , ,…},這時不要急于判斷三個集合間的關(guān)系,應(yīng)分析各集合中不同的元素。
= ∈N, ∈N,∴M N,又 = M,∴M N,
= P,∴N P 又 ∈N,∴P N,故P=N,所以選B。
點評:由于思路二只是停留在最初的歸納假設(shè),沒有從理論上解決問題,因此提倡思路一,但思路二易人手。
變式:設(shè)集合, ,則( B )
A.M=N B.M N C.N M D.
解:
當(dāng)時,2k+1是奇數(shù),k+2是整數(shù),選B
【例2】定義集合A*B={x|x∈A且x B},若A={1,3,5,7},B={2,3,5},則A*B的子集個數(shù)為
A)1 B)2 C)3 D)4
分析:確定集合A*B子集的個數(shù),首先要確定元素的個數(shù),然后再利用公式:集合A={a1,a2,…,an}有子集2n個來求解。
解答:∵A*B={x|x∈A且x B}, ∴A*B={1,7},有兩個元素,故A*B的子集共有22個。選D。
變式1:已知非空集合M {1,2,3,4,5},且若a∈M,則6?a∈M,那么集合M的個數(shù)為
A)5個 B)6個 C)7個 D)8個
變式2:已知{a,b} A {a,b,c,d,e},求集合A.
解:由已知,集合中必須含有元素a,b.
集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.
評析本題集合A的個數(shù)實為集合{c,d,e}的真子集的個數(shù),所以共有個 .
【例3】已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求實數(shù)p,q,r的值。
解答:∵A∩B={1} ∴1∈B ∴12?4×1+r=0,r=3.
∴B={x|x2?4x+r=0}={1,3}, ∵A∪B={?2,1,3},?2 B, ∴?2∈A
∵A∩B={1} ∴1∈A ∴方程x2+px+q=0的兩根為-2和1,
∴ ∴
變式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求實數(shù)b,c,m的值.
解:∵A∩B={2} ∴1∈B ∴22+m?2+6=0,m=-5
∴B={x|x2-5x+6=0}={2,3} ∵A∪B=B ∴
又 ∵A∩B={2} ∴A={2} ∴b=-(2+2)=4,c=2×2=4
∴b=-4,c=4,m=-5
【例4】已知集合A={x|(x-1)(x+1)(x+2)>0},集合B滿足:A∪B={x|x>-2},且A∩B={x|1
分析:先化簡集合A,然后由A∪B和A∩B分別確定數(shù)軸上哪些元素屬于B,哪些元素不屬于B。
解答:A={x|-21}。由A∩B={x|1-2}可知[-1,1] B,而(-∞,-2)∩B=ф。
綜合以上各式有B={x|-1≤x≤5}
變式1:若A={x|x3+2x2-8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>-4},A∩B=,求a,b。(答案:a=-2,b=0)
點評:在解有關(guān)不等式解集一類集合問題,應(yīng)注意用數(shù)形結(jié)合的方法,作出數(shù)軸來解之。
變式2:設(shè)M={x|x2-2x-3=0},N={x|ax-1=0},若M∩N=N,求所有滿足條件的a的集合。
解答:M={-1,3} , ∵M(jìn)∩N=N, ∴N M
①當(dāng)時,ax-1=0無解,∴a=0 ②
綜①②得:所求集合為{-1,0, }
【例5】已知集合 ,函數(shù)y=log2(ax2-2x+2)的定義域為Q,若P∩Q≠,求實數(shù)a的取值范圍。
分析:先將原問題轉(zhuǎn)化為不等式ax2-2x+2>0在 有解,再利用參數(shù)分離求解。
解答:(1)若 , 在 內(nèi)有有解
令當(dāng) 時,
所以a>-4,所以a的取值范圍是
變式:若關(guān)于x的方程 有實根,求實數(shù)a的取值范圍。
解答:
點評:解決含參數(shù)問題的題目,一般要進(jìn)行分類討論,但并不是所有的問題都要討論,怎樣可以避免討論是我們思考此類問題的關(guān)鍵。一.知識歸納:
1.集合的有關(guān)概念。
1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素
注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。
、诩现械脑鼐哂写_定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。
、奂暇哂袃煞矫娴囊饬x,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件
2)集合的表示方法:常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數(shù)集:N,Z,Q,R,N*
2.子集、交集、并集、補集、空集、全集等概念。
1)子集:若對x∈A都有x∈B,則A B(或A B);
2)真子集:A B且存在x0∈B但x0 A;記為A B(或,且 )
3)交集:A∩B={x| x∈A且x∈B}
4)并集:A∪B={x| x∈A或x∈B}
5)補集:CUA={x| x A但x∈U}
注意:①? A,若A≠?,則? A ;
、谌簦 ,則 ;
、廴羟 ,則A=B(等集)
3.弄清集合與元素、集合與集合的關(guān)系,掌握有關(guān)的術(shù)語和符號,特別要注意以下的符號:(1) 與、?的區(qū)別;(2) 與 的區(qū)別;(3) 與 的區(qū)別。
4.有關(guān)子集的幾個等價關(guān)系
、貯∩B=A A B;②A∪B=B A B;③A B C uA C uB;
、蹵∩CuB = 空集 CuA B;⑤CuA∪B=I A B。
5.交、并集運算的性質(zhì)
、貯∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;
、跜u (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;
6.有限子集的個數(shù):設(shè)集合A的元素個數(shù)是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。
高考數(shù)學(xué)必考知識點13
一、排列組合篇
1. 掌握分類計數(shù)原理與分步計數(shù)原理,并能用它們分析和解決一些簡單的應(yīng)用問題。
2. 理解排列的意義,掌握排列數(shù)計算公式,并能用它解決一些簡單的應(yīng)用問題。
3. 理解組合的意義,掌握組合數(shù)計算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡單的應(yīng)用問題。
4. 掌握二項式定理和二項展開式的性質(zhì),并能用它們計算和證明一些簡單的問題。
5. 了解隨機事件的發(fā)生存在著規(guī)律性和隨機事件概率的意義。
6. 了解等可能性事件的概率的意義,會用排列組合的基本公式計算一些等可能性事件的概率。
7. 了解互斥事件、相互獨立事件的意義,會用互斥事件的概率加法公式與相互獨立事件的概率乘法公式計算一些事件的概率。
8. 會計算事件在n次獨立重復(fù)試驗中恰好發(fā)生k次的概率.
二、立體幾何篇
高考立體幾何試題一般共有4道(選擇、填空題3道, 解答題1道), 共計總分27分左右,考查的知識點在20個以內(nèi)。 選擇填空題考核立幾中的計算型問題, 而解答題著重考查立幾中的邏輯推理型問題, 當(dāng)然, 二者均應(yīng)以正確的空間想象為前提。 隨著新的課程改革的進(jìn)一步實施,立體幾何考題正朝著“多一點思考,少一點計算”的發(fā)展。從歷年的考題變化看, 以簡單幾何體為載體的線面位置關(guān)系的論證,角與距離的探求是常考常新的熱門話題。
知識整合
1.有關(guān)平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復(fù)遇到的,而且是以各種各樣的問題(包括論證、計算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決“平行與垂直”的有關(guān)問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。
2. 判定兩個平面平行的方法:
(1)根據(jù)定義--證明兩平面沒有公共點;
(2)判定定理--證明一個平面內(nèi)的兩條相交直線都平行于另一個平面;
(3)證明兩平面同垂直于一條直線。
3.兩個平面平行的主要性質(zhì):
(1)由定義知:“兩平行平面沒有公共點”。
(2)由定義推得:“兩個平面平行,其中一個平面內(nèi)的直線必平行于另一個平面。
(3)兩個平面平行的性質(zhì)定理:”如果兩個平行平面同時和第三個平面相交,那
么它們的交線平行“。
(4)一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面。
(5)夾在兩個平行平面間的平行線段相等。
(6)經(jīng)過平面外一點只有一個平面和已知平面平行。
以上性質(zhì)(2)、(3)、(5)、(6)在課文中雖未直接列為”性質(zhì)定理“,但在解題過程中均可直接作為性質(zhì)定理引用。
解答題分步驟解答可多得分
1. 合理安排,保持清醒。數(shù)學(xué)考試在下午,建議中午休息半小時左右,睡不著閉閉眼睛也好,盡量放松。然后帶齊用具,提前半小時到考場。
2. 通覽全卷,摸透題情。剛拿到試卷,一般較緊張,不宜匆忙作答,應(yīng)從頭到尾通覽全卷,盡量從卷面上獲取更多的信息,摸透題情。這樣能提醒自己先易后難,也可防止漏做題。
3 .解答題規(guī)范有序。一般來說,試題中容易題和中檔題占全卷的80%以上,是考生得分的主要來源。對于解答題中的容易題和中檔題,要注意解題的規(guī)范化,關(guān)鍵步驟不能丟,如三種語言(文字語言、符號語言、圖形語言)的表達(dá)要規(guī)范,邏輯推理要嚴(yán)謹(jǐn),計算過程要完整,注意算理算法,應(yīng)用題建模與還原過程要清晰,合理安排卷面結(jié)構(gòu)……對于解答題中的難題,得滿分很困難,可以采用“分段得分”的策略,因為高考(微博)閱卷是“分段評分”。比如可將難題劃分為一個個子問題或一系列的步驟,先解決問題的一部分,能解決到什么程度就解決到什么程度,獲取一定的分?jǐn)?shù)。有些題目有好幾問,前面的小問你解答不出,但后面的小問如果根據(jù)前面的結(jié)論你能夠解答出來,這時候不妨引用前面的結(jié)論先解答后面的,這樣跳步解答也可以得分。
三、數(shù)列問題篇
數(shù)列是高中數(shù)學(xué)的重要內(nèi)容,又是學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)。高考對本章的考查比較全面,等差數(shù)列,等比數(shù)列的考查每年都不會遺漏。有關(guān)數(shù)列的試題經(jīng)常是綜合題,經(jīng)常把數(shù)列知識和指數(shù)函數(shù)、對數(shù)函數(shù)和不等式的知識綜合起來,試題也常把等差數(shù)列、等比數(shù)列,求極限和數(shù)學(xué)歸納法綜合在一起。探索性問題是高考的熱點,常在數(shù)列解答題中出現(xiàn)。本章中還蘊含著豐富的數(shù)學(xué)思想,在主觀題中著重考查函數(shù)與方程、轉(zhuǎn)化與化歸、分類討論等重要思想,以及配方法、換元法、待定系數(shù)法等基本數(shù)學(xué)方法。
近幾年來,高考關(guān)于數(shù)列方面的命題主要有以下三個方面;(1)數(shù)列本身的有關(guān)知識,其中有等差數(shù)列與等比數(shù)列的概念、性質(zhì)、通項公式及求和公式。(2)數(shù)列與其它知識的結(jié)合,其中有數(shù)列與函數(shù)、方程、不等式、三角、幾何的結(jié)合。(3)數(shù)列的應(yīng)用問題,其中主要是以增長率問題為主。試題的難度有三個層次,小題大都以基礎(chǔ)題為主,解答題大都以基礎(chǔ)題和中檔題為主,只有個別地方用數(shù)列與幾何的綜合與函數(shù)、不等式的綜合作為最后一題難度較大。
知識整合
1. 在掌握等差數(shù)列、等比數(shù)列的定義、性質(zhì)、通項公式、前n項和公式的基礎(chǔ)上,系統(tǒng)掌握解等差數(shù)列與等比數(shù)列綜合題的規(guī)律,深化數(shù)學(xué)思想方法在解題實踐中的指導(dǎo)作用,靈活地運用數(shù)列知識和方法解決數(shù)學(xué)和實際生活中的有關(guān)問題;
2. 在解決綜合題和探索性問題實踐中加深對基礎(chǔ)知識、基本技能和基本數(shù)學(xué)思想方法的認(rèn)識,溝通各類知識的聯(lián)系,形成更完整的知識網(wǎng)絡(luò),提高分析問題和解決問題的能力,進(jìn)一步培養(yǎng)學(xué)生閱讀理解和創(chuàng)新能力,綜合運用數(shù)學(xué)思想方法分析問題與解決問題的能力。
3. 培養(yǎng)學(xué)生善于分析題意,富于聯(lián)想,以適應(yīng)新的背景,新的設(shè)問方式,提高學(xué)生用函數(shù)的思想、方程的思想研究數(shù)列問題的自覺性、培養(yǎng)學(xué)生主動探索的精神和科學(xué)理性的思維方法.
四、導(dǎo)數(shù)應(yīng)用篇
專題綜述
導(dǎo)數(shù)是微積分的初步知識,是研究函數(shù),解決實際問題的有力工具。在高中階段對于導(dǎo)數(shù)的學(xué)習(xí),主要是以下幾個方面:
1. 導(dǎo)數(shù)的常規(guī)問題:
(1)刻畫函數(shù)(比初等方法精確細(xì)微);
(2)同幾何中切線聯(lián)系(導(dǎo)數(shù)方法可用于研究平面曲線的切線);
(3)應(yīng)用問題(初等方法往往技巧性要求較高,而導(dǎo)數(shù)方法顯得簡便)等關(guān)于 次多項式的導(dǎo)數(shù)問題屬于較難類型。
2. 關(guān)于函數(shù)特征,最值問題較多,所以有必要專項討論,導(dǎo)數(shù)法求最值要比初等方法快捷簡便。
3. 導(dǎo)數(shù)與解析幾何或函數(shù)圖象的混合問題是一種重要類型,也是高考(微博)中考察綜合能力的一個方向,應(yīng)引起注意。
知識整合
1. 導(dǎo)數(shù)概念的理解。
2. 利用導(dǎo)數(shù)判別可導(dǎo)函數(shù)的極值的方法及求一些實際問題的最大值與最小值。復(fù)合函數(shù)的求導(dǎo)法則是微積分中的重點與難點內(nèi)容。課本中先通過實例,引出復(fù)合函數(shù)的求導(dǎo)法則,接下來對法則進(jìn)行了證明。
3. 要能正確求導(dǎo),必須做到以下兩點:
(1)熟練掌握各基本初等函數(shù)的求導(dǎo)公式以及和、差、積、商的求導(dǎo)法則,復(fù)合函數(shù)的求導(dǎo)法則。
(2)對于一個復(fù)合函數(shù),一定要理清中間的復(fù)合關(guān)系,弄清各分解函數(shù)中應(yīng)對哪個變量求導(dǎo)。
五、解析幾何(圓錐曲線)
高考解析幾何剖析:
1、很多高考問題都是以平面上的點、直線、曲線(如圓、橢圓、拋物線、雙曲線)這三大類幾何元素為基礎(chǔ)構(gòu)成的圖形的問題;
2、演繹規(guī)則就是代數(shù)的演繹規(guī)則,或者說就是列方程、解方程的規(guī)則。
有了以上兩點認(rèn)識,我們可以毫不猶豫地下這么一個結(jié)論,那就是解決高考解析幾何問題無外乎做兩項工作:
1、幾何問題代數(shù)化。
2、用代數(shù)規(guī)則對代數(shù)化后的問題進(jìn)行處理。
【高考數(shù)學(xué)必考知識點】相關(guān)文章:
數(shù)學(xué)高考必考知識點02-19
高考數(shù)學(xué)必考知識點總結(jié)11-26
高考數(shù)學(xué)必考導(dǎo)數(shù)的知識點梳理09-27
數(shù)學(xué)必考知識點09-13
高考數(shù)學(xué)導(dǎo)數(shù)的應(yīng)用必考知識點整理01-27
高考語文必考知識點08-18