小學(xué)奧數(shù)問題解析
走走停停問題
行程問題中,遇到給出條件一個(gè)人走多久又休息多久的條件總是覺得思路很不明朗,不知各位都有哪些好方法來解此類題,下面提供兩個(gè)例題:
1、繞湖一周是20千米,甲、乙二人從湖邊某一點(diǎn)同時(shí)同地出發(fā),反向而行,甲以每小時(shí)4千米的速度每走一小時(shí)休息5分鐘,乙以每小時(shí)6千米的速度每走50分鐘后休息10分鐘,則兩人從出發(fā)到第一次相遇用了多少分鐘?
2、環(huán)形跑道周長是500米,甲、乙二人按順時(shí)針方向沿環(huán)形跑道同時(shí)同地起跑,甲每分鐘跑60米,乙每分鐘跑50米,甲、乙兩人每跑200米均要停下來休息一分鐘,那么甲首次追上乙需要多少分鐘?
當(dāng)甲首次追上乙的時(shí)候,甲跑的距離肯定比乙跑的距離多500
則當(dāng)S/200的余數(shù)<=100時(shí),甲停的次數(shù)比乙多2(S為乙跑的距離)
設(shè)乙跑的時(shí)間為T,則甲跑的時(shí)間為T-2 (此時(shí)間為純跑步用的時(shí)間)
50*T+500=60*(T-2) 得T=62
S=50*62=3100 S/200的.余數(shù)=100成立
停的次數(shù)=[3100/200]=15
則需要的總時(shí)間為:62+15=77
當(dāng)S/200的余數(shù)>100時(shí),甲停的次數(shù)比乙多3
則甲跑的時(shí)間為T-3
50*T+500=60*(T-3) 得T=68
S=50*68=3400 S/200的余數(shù)=0矛盾
所以結(jié)果是: 77
接送問題
例1:某工廠每天早晨都派小汽車接專家上班.有一天,專家為了早些到廠,比平時(shí)提前一小時(shí)出發(fā),步行去工廠,走了一段時(shí)間后遇到來接他的汽車,他上車后汽車立即調(diào)頭繼續(xù)前進(jìn),進(jìn)入工廠大門時(shí),他發(fā)現(xiàn)只比平時(shí)早到10分鐘,問專家在路上步行了多長時(shí)間才遇到汽車?(設(shè)人和汽車都作勻速運(yùn)動,他上車及調(diào)頭時(shí)間不記)
解析:設(shè)專家從家中出發(fā)后走到M處(如圖1)與小汽車相遇。由于正常接送必須從B→A→B,而現(xiàn)在接送是從B→M→B恰好提前10分鐘;則小汽車從M→A→M剛好需10分鐘;于是小汽車從M→A只需5分鐘。這說明專家到M處遇到小汽車時(shí)再過5分鐘,就是以前正常接送時(shí)在家的出發(fā)時(shí)間,故專家的行走時(shí)間再加上5分鐘恰為比平時(shí)提前的1小時(shí),從而專家行走了:60一5=55(分鐘)。
【小學(xué)奧數(shù)問題解析】相關(guān)文章:
相遇問題奧數(shù)解析07-26
奧數(shù)工程問題的解析07-13
植樹問題奧數(shù)題與解析07-29
樓梯問題奧數(shù)習(xí)題及解析07-24
相遇奧數(shù)問題解析07-22