數(shù)學解題方法與技巧匯總
一、數(shù)學思想方法在解題中有不可忽視的作用
解題的學習過程通常的程序是:閱讀數(shù)學知識,理解概念;在對例題和老師的講解進行反思,思考例題的方法、技巧和解題的規(guī)范過程;然后做數(shù)學練習題。
基本題要練程序和速度;典型題嘗試一題多解開發(fā)數(shù)學思維;最后要及時總結(jié)反思改錯,交流學習好的解法和技巧。
著名的數(shù)學教育家波利亞說“如果沒有反思,就錯過了解題的的一次重要而有意義的方面。”
教師在教學設計中要讓解學生好數(shù)學問題,就要對數(shù)學思想方法有清楚的認識,才能更好的挖掘題目的功能,引導學生發(fā)現(xiàn)總結(jié)題目的`解法和技巧,提高解題能力。
1. 函數(shù)與方程的思想
函數(shù)與方程的思想是中學數(shù)學最基本的思想。所謂函數(shù)的思想是指用運動變化的觀點去分析和研究數(shù)學中的數(shù)量關系,建立函數(shù)關系或構造函數(shù),再運用函數(shù)的圖像與性質(zhì)去分析、解決相關的問題。
而所謂方程的思想是分析數(shù)學中的等量關系,去構建方程或方程組,通過求解或利用方程的性質(zhì)去分析解決問題。
2. 數(shù)形結(jié)合的思想
數(shù)與形在一定的條件下可以轉(zhuǎn)化。如某些代數(shù)問題、三角問題往往有幾何背景,可以借助幾何特征去解決相關的代數(shù)三角問題;而某些幾何問題也往往可以通過數(shù)量的結(jié)構特征用代數(shù)的方法去解決。
因此數(shù)形結(jié)合的思想對問題的解決有舉足輕重的作用。
3. 分類討論的思想
分類討論的思想之所以重要,原因一是因為它的邏輯性較強,原因二是因為它的知識點的涵蓋比較廣,原因三是因為它可培養(yǎng)學生的分析和解決問題的能力。
原因四是實際問題中常常需要分類討論各種可能性。
解決分類討論問題的關鍵是化整為零,在局部討論降低難度。
【數(shù)學解題方法與技巧】相關文章:
數(shù)學解題的技巧與方法01-27
考研數(shù)學的解題方法技巧05-08
中考數(shù)學解題方法與技巧指導05-12
高考數(shù)學解題方法技巧整理參考06-29
考研數(shù)學解題技巧與方法指南12-12
何改善數(shù)學的解題能力的方法技巧06-26
中考數(shù)學備考方法及解題技巧07-10
數(shù)學解題方法07-30