- 相關(guān)推薦
初中數(shù)學(xué)余角和補(bǔ)角的教案
4.3.4 余角和補(bǔ)角
教學(xué)目標(biāo):
1、知識與技能:
、、在具體的現(xiàn)實(shí)情境中,認(rèn)識一個(gè)角的余角和補(bǔ)角,掌握余角和補(bǔ)角的性質(zhì)。
、、了解方位角,能確定具體物體的方位。
2、過程與方法:
進(jìn)一步提高學(xué)生的抽象概括能力,發(fā)展空間觀念和知識運(yùn)用能力,學(xué)會(huì)簡單的邏輯推理,并能對問題的結(jié)論進(jìn)行合理的猜想。
3、情感態(tài)度與價(jià)值觀:
體會(huì)觀察、歸納、推理對數(shù)學(xué)知識中獲取數(shù)學(xué)猜想和論證的重要作用,初步數(shù)學(xué)中推理的嚴(yán)謹(jǐn)性和結(jié)論的確定性,能在獨(dú)立思考和小組交流中獲益。
重、難點(diǎn)及關(guān)鍵:
1、重點(diǎn):認(rèn)識角的互余、互補(bǔ)關(guān)系及其性質(zhì),確定方位是本節(jié)課的重點(diǎn)。
2、難點(diǎn):通過簡單的推理,歸納出余角、補(bǔ)角的性質(zhì),并能用規(guī)范的語言描述性質(zhì)是難點(diǎn)。
3、關(guān)鍵:了解推理的意義和推理過程是掌握性質(zhì)的關(guān)鍵。
教學(xué)過程:
一、引入新課:
讓學(xué)生觀察意大利著名建筑比薩斜塔。
比薩斜塔建于1173年,工程曾間斷了兩次很長的時(shí)間,歷經(jīng)約二百年才完工。設(shè)計(jì)為垂直建造,但是在工程開始后不久便由于地基不均勻和土層松軟而傾斜。
二、新課講解:
1、探究互為余角的定義:
如果兩個(gè)角的和是90°(直角),那么這兩個(gè)角叫做互為余角,其中一個(gè)角是另一個(gè)角的余角。即:∠1是∠2的余角或∠2是∠1的余角。
2、練習(xí)⑴:
圖中給出的各角,那些互為余角?
3、探究互為補(bǔ)角的定義:
如果兩個(gè)角的和是180°(平角),那么這兩個(gè)角叫做互為補(bǔ)角,其中一個(gè)角是另一個(gè)角的補(bǔ)角。即:∠3是∠4的補(bǔ)角或∠4是∠3的補(bǔ)角。
4、練習(xí)⑵:
(1)圖中給出的各角,那些互為補(bǔ)角?
。2)填下列表:
∠a ∠a的余角 ∠a的補(bǔ)角
5°
32°
45°
77°
62°23′
x°
結(jié)論:同一個(gè)銳角的補(bǔ)角比它的余角大90°。
(3)填空:
、70°的余角是 ,補(bǔ)角是 。
、凇蟖(∠a<90°)的它的余角是 ,它的補(bǔ)角是 。
重要提醒:ⅰ(如何表示一個(gè)角的余角和補(bǔ)角)
銳角∠a的余角是(90 °—∠ a )
∠a的補(bǔ)角是(180 °—∠ a )
、⒒ビ嗪突パa(bǔ)是兩個(gè)角的數(shù)量關(guān)系,與它們的位置無關(guān)。
5、講解例題:
例1:若一個(gè)角的補(bǔ)角等于它的余角4倍,求這個(gè)角的度數(shù)。
解: 設(shè)這個(gè)角是x °,則它的補(bǔ)角是( 180°-x°),余角是(90°-x°) 。
根據(jù)題意得:
。180-x°)= 4 (90-x°)
解之得: x =60
答:這個(gè)角的度數(shù)是60 °。
6、練習(xí)⑶:
一個(gè)角的補(bǔ)角是它的3倍,這個(gè)角是多少度?
7、探究補(bǔ)角的性質(zhì):
如圖∠1 與∠2互補(bǔ),∠3 與∠4互補(bǔ) ,如果∠1=∠3,那么∠2與∠4相等嗎?為什么?
教師活動(dòng):操作多媒體演示。
學(xué)生活動(dòng):觀察圖形的運(yùn)動(dòng),得出結(jié)果:∠2=∠4
補(bǔ)角性質(zhì):同角或等角的補(bǔ)角相等
教師活動(dòng):向?qū)W生說明,以上從觀察圖形得到的結(jié)論,還可以從理論上說明其理由。
∵ ∠1 +∠2=180°, ∠3 +∠4=180°
∴ ∠2=180°-∠1 , ∠4=180°- ∠3
∵ ∠1 =∠3
∴ 180°-∠1 =180°- ∠3
即:∠2 =∠4
8、探究余角的性質(zhì):
如圖∠1 與∠2互余,∠3 與∠4互余 ,如果∠1=∠3,那么∠2與∠4相等嗎?為什么?
教師活動(dòng):操作多媒體演示。
學(xué)生活動(dòng):觀察圖形的運(yùn)動(dòng),得出結(jié)果:∠2=∠4
余角性質(zhì):同角或等角的余角相等
教師活動(dòng):向?qū)W生說明,以上從觀察圖形得到的結(jié)論,還可以從理論上說明其理由。
∵ ∠1 +∠2=90°, ∠3 +∠4=90°
∴ ∠2=90°-∠1 , ∠4=90°- ∠3
∵ ∠1 =∠3
∴ 90°-∠1 =90°- ∠3
即:∠2 =∠4
9、講解例題:
例2:如圖,∠AOB=90°,∠COD=∠EOD=90°,C,O,E在一條直線上,且∠2=∠4,請說出∠1與∠3之間的關(guān)系?并試著說明理由?
解:∠1=∠3
∵ ∠1+∠2= ∠COD=90°
∠3+∠2= ∠AOB=90°
∴ ∠1=∠3 (等角的余角相等)
10、練習(xí)⑷:
如圖∠AOB = 90 °,∠COD = 90 °則∠1與∠2是什么關(guān)系?
11、講解方位角:
。1)認(rèn)識方位:
正東、正南、正西、正北、東南、
西南、西北、東北。
。2)找方位角:
ⅰ乙地對甲地的方位角 ⅱ甲地對乙地的方位角
12、講解例題:
例3:選擇題:
(1)A看B的方向是北偏東21°,那么B看A的方向( )
A:南偏東69° B:南偏西69° C:南偏東21° D:南偏西21°
(2)如圖,下列說法中錯(cuò)誤的是( )
A: OC的方向是北偏東60°
B: OC的方向是南偏東60°
C: OB的方向是西南方向
D: OA的方向是北偏西22°
(3)在點(diǎn)O 北偏西60°的某處有一點(diǎn)A,在點(diǎn)O南偏西20°的某處有一點(diǎn)B,則∠AOB的度數(shù)是( )
A:100° B:70° C:180° D:140°
例4:如圖.貨輪O在航行過程中,發(fā)現(xiàn)燈塔A在它南偏東60°的方向上,同時(shí),在它北偏東40°,南偏西10°,西北(即北偏西45°)方向上又分別發(fā)現(xiàn)了客輪B,貨輪C和海島D.仿照表示燈塔方位的方法畫出表示客輪B,貨輪C和海島D方向的射線.
三、課堂小結(jié):
1、本節(jié)課學(xué)習(xí)了余角和補(bǔ)角,并通過簡單的推理,得到出了余角和補(bǔ)角的性質(zhì)。
2、了解方位角,學(xué)會(huì)了確定物體運(yùn)動(dòng)的方向。
四、課外作業(yè):
1、課本第114頁:9、11、12題。
2、學(xué)習(xí)指要第78-79頁:訓(xùn)練二和訓(xùn)練三。
課后反思:
【初中數(shù)學(xué)余角和補(bǔ)角的教案】相關(guān)文章:
初中數(shù)學(xué)余角與補(bǔ)角一課的教學(xué)設(shè)計(jì)07-24
《余角和補(bǔ)角》教學(xué)設(shè)計(jì)與反思范本09-12
初中數(shù)學(xué)教案06-14
初中數(shù)學(xué)《矩形》教案08-16
初中數(shù)學(xué)教案07-06
初中數(shù)學(xué) 直線 教案06-27
初中數(shù)學(xué)圓教案10-21