- 相關(guān)推薦
小學(xué)因數(shù)和倍數(shù)教學(xué)反思
范文一
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,在以往的教材中,都是通過除法算式來引出整除的概念,而現(xiàn)在的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個簡單的實(shí)物圖(2行飛機(jī),每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。對于學(xué)生來說是比較難掌握的內(nèi)容。尤其對因數(shù)和倍數(shù)是一對相互依存的概念,不能單獨(dú)存在,不是很好理解。我通過生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。所以在上課之前我特意舉一些生活中的實(shí)例來幫助學(xué)生對相互依存的理解,在描述因數(shù)和倍數(shù)的概念時就不會說錯了。對于這節(jié)課的教學(xué),我特別注意下面幾個細(xì)節(jié)來幫助學(xué)生理解因數(shù)和倍數(shù)的概念。
1.是我上課時特別注意讓學(xué)生明白什么情況下才能討論因數(shù)和倍數(shù)的概念.
2.是要學(xué)生注意區(qū)分乘法算式中的"因數(shù)"和本單元中的"因數(shù)"的聯(lián)系和區(qū)別.在同一個乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對"積"而言的,與"乘數(shù)"同義,可以是小數(shù),而后者是相對于"倍數(shù)"而言的,兩者都只能是整數(shù).
3.是要注意區(qū)分"倍數(shù)"與前面學(xué)過的"倍"的聯(lián)系和區(qū)別."倍"的概念比"倍數(shù)"要廣.可以說"15是3 的倍數(shù)",也可以說"1.5是0.3的5倍",但我們只能說"15是3的倍數(shù)",卻不能說"1.5是0.3的倍數(shù)".在課堂中反復(fù)強(qiáng)調(diào),幫助學(xué)生認(rèn)真理解辨析,所以學(xué)生一節(jié)課下來對這組概念就理解透徹了,就不會模糊了.
范文二
《因數(shù)和倍數(shù)》是人教版數(shù)學(xué)五年級下冊第二單元的內(nèi)容,這個地方知識點(diǎn)很重要,學(xué)習(xí)掌握的好壞直接影響下邊的學(xué)習(xí),特別到后來的最大公因數(shù),最小公倍數(shù),所以,在學(xué)習(xí)的時候我很注重學(xué)生的掌握情況,不讓每一個學(xué)生掉隊。這節(jié)課中的概念比較難區(qū)分,在教學(xué)概念的時候,我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先以拼圖比賽為素材,讓學(xué)生動手操作快速把12個小正方形擺出一個長方形,再讓學(xué)生用乘法算式表示出所擺的長方形,在交流中得到三種不同的擺法和三種不同的乘法算式。借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣,學(xué)生從動手操作,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學(xué)到數(shù)學(xué),讓學(xué)生自主體驗(yàn)數(shù)與形的結(jié)合,進(jìn)而形成因數(shù)與倍數(shù)的意義。使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。
能不重復(fù)、不遺漏、有序地找出一個數(shù)的因數(shù),是本課的教學(xué)難點(diǎn)。在教學(xué)中,我是這樣設(shè)計的:在根據(jù)1×12=12,2×6=12,3×4=12三個乘法算式說出了誰是誰的因數(shù)、誰是誰的倍數(shù)后,教師緊接著提問:12的因數(shù)有哪些?學(xué)生看著黑板上的算式很快地找出12的因數(shù),接著再提問:你是用什么方式找到12的因數(shù)的?在學(xué)生說出方法后,為了讓學(xué)生探索出找一個因數(shù)的方法,我讓學(xué)生自己找一找15的因數(shù)有哪些。預(yù)設(shè)在匯報時,能借此解決如何有序、不重復(fù)、不遺漏地找出一個數(shù)的因數(shù)。但在實(shí)際交流時,學(xué)生的方法出現(xiàn)了兩種意見,并且各抒己見,因?yàn)?5的因數(shù)只有兩對,無論怎樣找都不會遺漏。作為老師,我這時沒有把我的意見強(qiáng)加給學(xué)生,而是以男女生比賽的形式,讓學(xué)生分別找16、18的所有因數(shù)。由于部分學(xué)生運(yùn)用從小到大一對一對地找很快找出這兩個數(shù)的因數(shù),另一部分卻在無序的情況下,不是重復(fù)就是遺漏,這樣在比較中,不重復(fù)、不遺漏、有序地找出一個數(shù)的因數(shù)的方法,學(xué)生就能夠很好地接受并掌握。雖然在這個環(huán)節(jié)上花了比較多的時間,但對學(xué)生自主探索、自主學(xué)習(xí)起到了很好的促進(jìn)作用。
【小學(xué)因數(shù)和倍數(shù)教學(xué)反思】相關(guān)文章:
因數(shù)和倍數(shù)教學(xué)設(shè)計02-09
因數(shù)和倍數(shù)教學(xué)反思(通用30篇)06-22
因數(shù)和倍數(shù)教案12-28
《因數(shù)和倍數(shù)》教學(xué)設(shè)計(通用15篇)06-15
因數(shù)和倍數(shù)的教學(xué)設(shè)計(通用7篇)06-11
因數(shù)與倍數(shù)例2教學(xué)設(shè)計02-05